Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Moving genes have scientists seeing spots

Live imaging reveals for the first time gene motion in cell nucleus

An international team of scientists led by the UK's John Innes Centre and including scientists from Australia, Japan, the US and France has perfected a way of watching genes move within a living plant cell.

Using this technique scientists watched glowing spots, which marked the position of the genes, huddle together in the cold as the genes were switched "off".

"The movement of genes within the nucleus, captured here using live imaging, seems to play a role in switching their activity on and off", said first author Stefanie Rosa from the John Innes Centre.

"In our study, we tracked genes involved in accelerating flowering in response to cold, but the movement of genes could be important in all areas of biology."

"Studying gene motion could improve our understanding of how environmental cues and nurture impact on nature and gene expression."

The research will be published on Thursday in the international journal Genes & Development.

"What is remarkable about this finding is that we saw genes move in response to changes in the environment, and that this movement seems to be involved in genetic control," said Associate Professor Josh Mylne.

He initiated the approach almost 10 years ago as he embarked on his career at the John Innes Centre and is now .

"The gene we studied (FLC) allows plants to respond to changes in the season. When FLC gets turned off (by cold), the plant starts to make flowers instead of leaves. We knew FLC was switched off by cold, but we had no idea that FLC genes would congregate as they get switched off."

Previous to this research, plant genes were studied by cutting up plants, killing the cells and fixing them to glass slides. Researchers can now watch genes move inside living plants.

Although the study is of interest to researchers by providing an understanding of how FLC moves as it is turned off, it can be applied to any gene in plants or animals. The major benefit of this approach is that it allows researchers to monitor a gene in whole, living organisms.

"What we want to know now is what is happening at these sites where the genes are congregating," Associate Professor Mylne said. "Are the genes going somewhere special inside the cell? What takes them there and how do the chromosomes move and let the genes congregate? How many other genes congregate like this when they get turned off?

"There are so many new questions this discovery will help us answer."

This work was supported in part by the Biotechnology and Biological Sciences Research Council and the European Research Council. It is available at:

Zoe Dunford | EurekAlert!

Further reports about: Moving genes areas of biology living organism living plants

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>