Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moving genes have scientists seeing spots

09.09.2013
Live imaging reveals for the first time gene motion in cell nucleus

An international team of scientists led by the UK's John Innes Centre and including scientists from Australia, Japan, the US and France has perfected a way of watching genes move within a living plant cell.

Using this technique scientists watched glowing spots, which marked the position of the genes, huddle together in the cold as the genes were switched "off".

"The movement of genes within the nucleus, captured here using live imaging, seems to play a role in switching their activity on and off", said first author Stefanie Rosa from the John Innes Centre.

"In our study, we tracked genes involved in accelerating flowering in response to cold, but the movement of genes could be important in all areas of biology."

"Studying gene motion could improve our understanding of how environmental cues and nurture impact on nature and gene expression."

The research will be published on Thursday in the international journal Genes & Development.

"What is remarkable about this finding is that we saw genes move in response to changes in the environment, and that this movement seems to be involved in genetic control," said Associate Professor Josh Mylne.

He initiated the approach almost 10 years ago as he embarked on his career at the John Innes Centre and is now .

"The gene we studied (FLC) allows plants to respond to changes in the season. When FLC gets turned off (by cold), the plant starts to make flowers instead of leaves. We knew FLC was switched off by cold, but we had no idea that FLC genes would congregate as they get switched off."

Previous to this research, plant genes were studied by cutting up plants, killing the cells and fixing them to glass slides. Researchers can now watch genes move inside living plants.

Although the study is of interest to researchers by providing an understanding of how FLC moves as it is turned off, it can be applied to any gene in plants or animals. The major benefit of this approach is that it allows researchers to monitor a gene in whole, living organisms.

"What we want to know now is what is happening at these sites where the genes are congregating," Associate Professor Mylne said. "Are the genes going somewhere special inside the cell? What takes them there and how do the chromosomes move and let the genes congregate? How many other genes congregate like this when they get turned off?

"There are so many new questions this discovery will help us answer."

This work was supported in part by the Biotechnology and Biological Sciences Research Council and the European Research Council. It is available at: http://www.genesdev.org/cgi/doi/10.1101/gad.221713.113

Zoe Dunford | EurekAlert!

Further reports about: Moving genes areas of biology living organism living plants

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>