Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Movies for the human genome

EMBL scientists identify the genes involved in cell division in humans

Name a human gene, and you’ll find a movie online showing you what happens to cells when it is switched off. This is the resource that researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and their collaborators in the Mitocheck consortium are making freely available, as the result of a study in which they have identified the genes involved in mitosis – the most common form of cell division – in humans. Published today in Nature, their work begins to unravel the molecular workings of one of the most fundamental processes of life: how one cell becomes two.

“Without mitosis, nothing happens in life, really”, says Jan Ellenberg, who led the study at EMBL, “and when mitosis goes wrong, you get defects like cancer.”

Of the 22,000 genes in each human cell, almost 600 play a part in mitosis, Ellenberg and colleagues found. To uncover which genes are involved in this process, the scientists developed a new method using high-throughput imaging of living cells. They silenced, or inactivated, each of the 22,000 human genes one by one in a different set of cells, and filmed those cells for 48 hours under a microscope. This generated almost 200,000 time-lapse movies of mitosis. Having a person – or even a group of people – process such vast amounts of information would be almost impossible, so the scientists created a new computer program that analyses the footage and automatically detects what characteristic defects cells display, and in what order. By grouping genes with similar effects – for instance, genes which when inactivated led to cells with 2 nuclei instead of one, after division – they were able to identify genes involved in mitosis, which they confirmed with further experimental assays.

“The end result is that we now have a very rich resource for the scientific community, as we’re making all the movies and all the analysis data freely available online,” Ellenberg emphasises: “Scientists can go to the website, type in the name of their favourite gene, and watch what happens when it is silenced; they can find out what other genes have similar effects – all in a few mouse clicks, instead of months or years of work in the lab!”

But mitosis is not solved yet, the scientists say. They have yet to uncover exactly how these genes act at the molecular level – a task which will be tackled by a follow-up project called Mitosys. All data from this follow-up work will also be made freely available online, creating what Ellenberg describes as a ‘one-stop-shop’ for mitosis research.

In the mean time, the new methodology the EMBL scientists developed to silence all of an organism’s genes in a fast and systematic manner is itself proving a boon to the scientific community.

“A year after we developed these new siRNA microarrays,” says Rainer Pepperkok, who led the method’s development at EMBL, “they’re already in use by over 10 research groups from across Europe.”

The current study looked at HeLa cells, a widely studied line of cancer cells. Now that they have narrowed the search from a daunting 22,000 to a more manageable 600 genes, the scientists would like to investigate how these same genes act in other cancers and in healthy cells, as such comparisons could help to identify markers which could be used for diagnosis or to help make better-informed treatment decisions.

The study was carried out as part of the Mitocheck consortium, coordinated by Jan-Michael Peters at the Institute for Molecular Pathology in Vienna, Austria, and the data is available at The consortium has also investigated the proteins encoded by these genes, identifying those involved in separating the paired chromosomes during mitosis in a paper published online today in Science.

Policy regarding use
EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Sonia Furtado | EMBL Press
Further information:

Further reports about: EMBL Mitocheck Molecular Biology Molecular Target Movies healthy cell living cell

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>