Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Movies for the human genome

01.04.2010
EMBL scientists identify the genes involved in cell division in humans

Name a human gene, and you’ll find a movie online showing you what happens to cells when it is switched off. This is the resource that researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and their collaborators in the Mitocheck consortium are making freely available, as the result of a study in which they have identified the genes involved in mitosis – the most common form of cell division – in humans. Published today in Nature, their work begins to unravel the molecular workings of one of the most fundamental processes of life: how one cell becomes two.

“Without mitosis, nothing happens in life, really”, says Jan Ellenberg, who led the study at EMBL, “and when mitosis goes wrong, you get defects like cancer.”

Of the 22,000 genes in each human cell, almost 600 play a part in mitosis, Ellenberg and colleagues found. To uncover which genes are involved in this process, the scientists developed a new method using high-throughput imaging of living cells. They silenced, or inactivated, each of the 22,000 human genes one by one in a different set of cells, and filmed those cells for 48 hours under a microscope. This generated almost 200,000 time-lapse movies of mitosis. Having a person – or even a group of people – process such vast amounts of information would be almost impossible, so the scientists created a new computer program that analyses the footage and automatically detects what characteristic defects cells display, and in what order. By grouping genes with similar effects – for instance, genes which when inactivated led to cells with 2 nuclei instead of one, after division – they were able to identify genes involved in mitosis, which they confirmed with further experimental assays.

“The end result is that we now have a very rich resource for the scientific community, as we’re making all the movies and all the analysis data freely available online,” Ellenberg emphasises: “Scientists can go to the website, type in the name of their favourite gene, and watch what happens when it is silenced; they can find out what other genes have similar effects – all in a few mouse clicks, instead of months or years of work in the lab!”

But mitosis is not solved yet, the scientists say. They have yet to uncover exactly how these genes act at the molecular level – a task which will be tackled by a follow-up project called Mitosys. All data from this follow-up work will also be made freely available online, creating what Ellenberg describes as a ‘one-stop-shop’ for mitosis research.

In the mean time, the new methodology the EMBL scientists developed to silence all of an organism’s genes in a fast and systematic manner is itself proving a boon to the scientific community.

“A year after we developed these new siRNA microarrays,” says Rainer Pepperkok, who led the method’s development at EMBL, “they’re already in use by over 10 research groups from across Europe.”

The current study looked at HeLa cells, a widely studied line of cancer cells. Now that they have narrowed the search from a daunting 22,000 to a more manageable 600 genes, the scientists would like to investigate how these same genes act in other cancers and in healthy cells, as such comparisons could help to identify markers which could be used for diagnosis or to help make better-informed treatment decisions.

The study was carried out as part of the Mitocheck consortium, coordinated by Jan-Michael Peters at the Institute for Molecular Pathology in Vienna, Austria, and the data is available at www.mitocheck.org. The consortium has also investigated the proteins encoded by these genes, identifying those involved in separating the paired chromosomes during mitosis in a paper published online today in Science.

Policy regarding use
EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Sonia Furtado | EMBL Press
Further information:
http://www.embl.org
http://www.mitocheck.org

Further reports about: EMBL Mitocheck Molecular Biology Molecular Target Movies healthy cell living cell

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>