Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Movement without Muscles

12.05.2011
Zoologists of the University Jena (Germany) are on the Trail of the Evolution of Body Contractions

All animals move – cheetahs faster, snails more slowly. Muscle contractions are the basis of all movements, at least according to general opinion. But there are animal groups, that don't have any muscles at all, as they branched off from the evolutionary path before muscle cells evolved. However these animal groups, for instance the sea sponges, are not immovable. Sponges are able to contract without muscles. These contractions were already known to sponge divers in ancient Greece, as Aristotele described in 350 BC.


The sponge "Tethya wilhelma" has meanwhile become a model organism for evolutionary questions as well as an important subject of investigation within the current study of PD Dr. Michael Nickel from Jena University. Photo: Michael Nickel/FSU

A group of scientists headed by associate professor Dr. Michael Nickel of Friedrich Schiller University Jena (Germany) is looking into movement without muscles. The scientists from the Institute of Systematic Zoology and Evolutionary Biology are mostly interested in the evolutionary aspect, especially in the question: Which evolutionary forerunners did the muscle cells derive from?

In a new study which will be published in the Journal of Experimental Biology (Band 214, doi: 10.1242/jeb.049148) on 15 May 2011, the evolutionary biologists are giving new answers to the question: Which cells in the sponges are contracting? In this paper the researchers are relying on the 3dimensional (3D) images, which they created with synchrotron radiation-based X-ray microtomography. Thus, the Jena scientists in co-operation with the Helmholtz-Zentrum Gesthacht at the Deutsches Elektronen Synchrotron Hamburg could compare and visualise the 3D structure of contracted and expanded sponges.

“A key feature of our approach is the use of 3D data for measuring the volume and surface of our sponges,“ says Nickel. “Although the 3D volumetric analysis is widely known and used in the technical sciences, it has rarely been used in zoology – in spite of its enormous information potential.“ Thus, Nickel's team was able to show that the inner and outer surfaces – and therefore the epithelial cells, so-called pinacozytes, cause the strong body contractions of the sponges. So finally, the Jena scientists could also settle a hundred year old debate about the cause of cellular contractions. Until now far spindle-shaped cells in the tissue of sponges as well as epithelial cells have been thought to be possible 'candidates' – but now the Jena scientists could identify the true initiator of the contractions.

The new findings of the researchers from Jena University make new approaches about the evolutionary development of musculature possible. “The early evolution of muscles has not been fully understood so far. According to current scientific knowledge muscle cells seem to have surfaced from nowhere“, Nickel says. “But surely there must have been evolutionary predecessor systems, that have been unknown until now.“ The sponge epithelial cells are now moving to the forefront in the evolutionary biologists' further research into the context of this. “There is a lot of evidence that the sponge epithelial cells and the muscle cells of all the other animals are going back to a common contractile cellular predecessor.“ In future this will be analysed by international co-operations, by also using genome and gene expression related data.

Original Publication:
Michael Nickel et al.: ”The contractile sponge epithelium sensu lato – body contraction of the demosponge Tethya wilhelma is mediated by the pinacoderm”, Journal of Experimental Biology, Vol. 214, doi: 10.1242/jeb.049148.
Contact:
PD Dr. Michael Nickel
Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum
Friedrich Schiller University Jena
Erbertstr. 1
D-07743 Jena
Phone.: ++49 (0)3641 949174
Email: m.nickel[at]uni-jena.de

Axel Burchardt | Uni Jena
Further information:
http://www.porifera.net
http://www.uni-jena.de/en/start_en.html

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>