Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Move Over Predators: Plants Can Control the Food Chain Too - from the Bottom Up

29.03.2010
Forget top-to-bottom only. New Cornell University evolutionary biology research shows how plants at the bottom of the food chain have evolved mechanisms that influence ecosystem dynamics as well. ( Science, March 26, 2010.)

“The ecology and interactions of most organisms is dictated by their evolutionary history,” said Anurag Agrawal, associate professor of ecology and evolutionary biology (EEB), the study’s senior author.

In food webs, predators help suppress populations of prey by eating them; that frees species lower in the food chain, such as plants, to flourish, a dynamic called a “trophic cascade.” Most trophic cascade studies have focused on the ability of predators to increase plant biomass by eating herbivores. Such studies typically find strong trophic cascades in aquatic environments, where big fish eat minnows, which eat the tiny algae-eating crustaceans called daphnia.

Agrawal, first author Kailen Mooney, who is a former Cornell postdoctoral researcher and now assistant professor at the University of California-Irvine, and colleagues studied trophic cascades in 16 milkweed species, famed for their interactions with monarch butterflies, and also fed upon by aphids.
Plants have evolved three main strategies for increasing their biomass as much as they can against the forces that limit their growth, said the researchers:

They grow as quickly as possible; develop direct defenses, such as toxins or prickly leaves, against herbivores; and attract such predators as ladybugs that eat their pests.

But plants do not have the resources to develop all three defenses. Since Darwin, evolutionary biologists have hypothesized that over millions of years of evolution, plant species are subject to trade-offs, developing some defense strategies in lieu of others; a key finding of the new study is that these evolutionary trade-offs drive how modern ecosystems are structured.

In the case of milkweed, some favored fast growth and the ability to attract predators while putting less energy into resisting herbivores.

The study found that one of the major factors leading to greater milkweed biomass (or growth) is the production of volatile compounds called sesquiterpenes, which attract such predators as aphid-eating ladybugs. But surprisingly, the plants’ biomass increases regardless of whether ladybugs or other aphid predators are present.

The reason, the researchers suggest, is because the trait to produce sesquiterpenes appears genetically linked to faster growth; the strategy here is to replace leaves faster than they can be eaten. At the same time, milkweed species that put more energy into growing faster put less energy into resisting such pests as aphids.

“Because no species can do everything, milkweeds that grow fast necessarily have lower resistance to aphids,” said Agrawal. “Thus species that grow fast benefit the most from predators” of aphids.

The findings have implications for agriculture, as conventional strategies for controlling pests often involve spraying insecticides, said Agrawal. “By including the evolutionary history in our understanding of natural pest management, we gain insight into plant strategies that have stood the test of time, and this may provide hints for breeding crops with traits that ensure robust lines of defense,” he added.

Co-authors include Andre Kessler, assistant professor, and postdoctoral researcher Rayko Halitschke, both in EEB at Cornell.

The study was funded by the National Science Foundation, Cornell Center for a Sustainable Future and University of California-Irvine’s School of Biological Sciences.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>