Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse Work: New Insights on a Fundamental DNA Repair Mechanism

04.03.2010
Adding a new link to our understanding of the complex chain of chemistry that keeps living cells alive, a team of researchers from the University of Vermont (UVM), the University of Utah, Vanderbilt University and the National Institute of Standards and Technology (NIST) has demonstrated for the first time the specific activity of the protein NEIL3, one of a group responsible for maintaining the integrity of DNA in humans and other mammals. Their work reported last week* sheds new light on a potentially important source of harmful DNA mutations.

Since it first was identified about eight years ago, NEIL3 has been believed to be a basic DNA-maintenance enzyme of a type called a glycosylase. These proteins patrol the long, twisted strands of DNA looking for lesions—places where one of the four DNA bases has been damaged by radiation or chemical activity. They cut the damaged bases free from the DNA backbone, kicking off follow-on mechanisms that link in the proper undamaged base. The process is critical to cell health, says NIST biochemist and Senior Research Fellow Miral Dizdaroglu, “DNA is damaged all the time. About one to two percent of oxygen in the body becomes toxic in cells, for example, creating free radicals that damage DNA. Without these DNA repair mechanisms there wouldn’t be any life on this planet, really.”

The glycosylases seem to be highly specific; each responds to only a few unique cases of the many potential DNA base lesions. Figuring out exactly which ones can be challenging. NEIL3 and its kin NEIL1 and NEIL2 are mammalian versions of an enzyme found in the bacterium E. coli, which first was identified in work at UVM. The lesion targets of NEIL1 and NEIL2 have been known for some time, but NEIL3, a much more complicated protein twice the size of the others, had resisted several attempts to purify it and determine just what it does. In a significant advance, a research team at UVM managed to clone the house mouse version of NEIL3 (99 percent identical to the human variant), and then prepare a truncated version of it that was small enough to dissolve in solution for analysis but large enough to retain the portion of the protein that recognizes and excises DNA lesions.

Using a technique they developed for rapidly analyzing such enzymes, NIST researchers Dizdaroglu and Pawel Jaruga mixed the modified protein with sample DNA that had been irradiated to produce large numbers of random base lesions. Because glycosylases work by snipping off damaged bases, a highly sensitive analysis of the solution after the DNA has been removed can reveal just which lesions are attacked by the enzyme, and with what efficiency. The NIST results closely matched independent tests by others in the team that match the enzyme against short lengths of DNA-like strands with a single specific target lesion.

In addition to finally confirming the glycosylase nature of NEIL3, says UVM team leader Susan Wallace, tests of the enzyme in a living organism—a tailored form of E. coli designed to have a very high mutation rate—had an unexpected bonus. Measurements at NIST showed that NEIL3 is extremely effective at snipping out a particular type of lesion called FapyGua** and seems to dramatically reduce mutations in the bacterium, a result that points both to the effectiveness of NEIL3 and the potentially important role of FapyGua in causing dangerous mutations in DNA.

* M. Liu, V. Bandaru, J.P. Bond, P. Jaruga, X. Zhao, P.P. Christov, C.J. Burrows, C.J. Rizzo, M. Dizdaroglu and S.S. Wallace. The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo. Proc. Natl. Acad. Sci. USA, Early Edition, Published online before print Feb. 25, 2010, doi:10.1073/pnas.0908307107.

** 2,6-diamino-4-hydroxy-5-formamidopyrimidine

Michael Baum, michael.baum@nist.gov, (301) 975-2763

Michael Baum | Newswise Science News
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>