Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mouse viruses could aid hepatitis research

09.04.2013
Newly discovered mouse viruses could pave the way for future progress in hepatitis research, enabling scientists to study human disease and vaccines in the ultimate lab animal.

In a study to be published in mBio®, the online open-access journal of the American Society for Microbiology, scientists describe their search for viruses related to the human hepatitis C virus (HCV) and human pegiviruses (HPgV) in frozen stocks of wild mice.

The discovery of several new species of hepaciviruses and pegiviruses that are closely related to human viruses suggests they might be used to study these diseases and potential vaccines in mice, without the need for human volunteers.

About 2% of the population is infected with the hepatitis C virus and 5% is infected with human pegiviruses, but it's been difficult to study new drugs or develop vaccines against these infections because the human strains do not infect animals that can be studied in the lab. Lead author Amit Kapoor of Columbia University says it surprised him to find similar viruses in mice.

"People have been waiting for decades to find something like this. It was shocking for me to see that the viruses are there and there are so many of them," says Kapoor.

Kapoor and his colleagues screened an archive of more than 400 frozen rodents, mostly deer mice, for viruses related to the human hepatitis C virus and human pegiviruses. The search turned up a number of candidates, and they selected two for complete genome sequencing: a rodent hepacivirus (RHV) found in deer mice and a rodent pegivirus (RPgV) found in a white-throated woodrat. Sequencing confirmed that the viruses are very closely related to human strains but they represent several novel species in the Hepacivirus and Pegivirus genera within the family Flaviviridae.

These rodent viruses have genes, proteins, and translational elements that closely mirror those found in human hepaciviruses and pegiviruses, suggesting they have great potential for use in the lab. Animal models of hepatitis would help scientists explore the ways these viruses causes disease and aid in the design of treatments and vaccines. Human pegiviruses, on the other hand, have unknown effects, so studying how they work in rodents could well point the way to what they might do in the human body and why so many people are infected.

Kapoor's lab is now focused on exploring the biology of these viruses. "We are trying to infect deer mice, to study biological properties of these hepatitis C-like viruses," says Kapoor. "And if we find one of these viruses is hepatotrophic [having an attraction to the liver] and causes disease similar to hepatitis C, that would be a big step forward in understanding hepatitis C-induced pathology in humans."

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>