Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse study turns fat-loss and longevity link on its head

04.05.2011
Since the 1930s scientists have proposed food restriction as a way to extend life in mice. Though feeding a reduced-calorie diet has indeed lengthened the life spans of mice, rats and many other species, new studies with dozens of different mouse strains indicate that food restriction does not work in all cases.
Diet and fat loss
Researchers at the UT Health Science Center San Antonio’s Barshop Institute for Longevity and Aging Studies, with colleagues at the University of Colorado, studied the effect of food restriction on fat and weight loss in 41 genetically different strains of mice. The scientists then correlated the amount of fat reduction to life span.

The answer: Mice that maintained their fat actually lived longer. Those that lost fat died earlier.

Contrary to view
“Indeed, the greater the fat loss, the greater the likelihood the mice would have a negative response to dietary restriction, i.e., shortened life,” said James Nelson, Ph.D., professor of physiology at the Barshop Institute. “This is contrary to the widely held view that loss of fat is important for the life-extending effect of dietary restriction. It turns the tables a bit.”

The results are expected to be published in the June issue of Aging Cell.

More study needed
Dr. Nelson’s graduate student, Chen-Yu Liao, who will soon receive his Ph.D. and advance to a postdoctoral fellowship at California’s Buck Institute for Research on Aging, cautioned that the new findings cannot be directly applied to people until similar studies are done in humans.

People are best advised to adopt a moderate approach, not losing all fat but definitely not keeping unhealthy amounts of fat, either.

“None of the mice in this study were what we would consider to be obese,” Liao said.

Genes impact effect
The findings bear out what geneticists long have said: there is nothing that works for every genotype, which is an organism’s specific and unique set of genes.

“We know that humans respond to diet very differently as individuals based on their genetics,” Dr. Nelson said. “Some have great difficulty losing weight while others have difficulty maintaining weight. If these results translate to humans, they would suggest that individuals who have difficulty losing weight may benefit from the positive effects of dietary restriction more than those who lose weight easily.”

Authors
Fat Maintenance Is a Predictor of the Murine Lifespan Response to Dietary Restriction. Chen-Yu Liao1,2, Brad A. Rikke3, Thomas E. Johnson3,4, Jonathan A.L. Gelfond2,5, Vivian Diaz2, James F. Nelson1,2 DOI: 10.1111/j.1474-9726.2011.00702.x

1Department of Physiology, UT Health Science Center San Antonio; 2Barshop Institute for Longevity and Aging Studies, UT Health Science Center San Antonio; 3Institute for Behavioral Genetics, University of Colorado, Boulder; 4Department of Integrative Physiology, University of Colorado, Boulder; 5Department of Epidemiology and Biostatistics, UT Health Science Center San Antonio

The University of Texas Health Science Center at San Antonio, one of the country’s leading health sciences universities, ranks in the top 3 percent of all institutions worldwide receiving federal funding. Research and other sponsored program activity totaled $228 million in fiscal year 2010. The university’s schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced approximately 26,000 graduates. The $744 million operating budget supports eight campuses in San Antonio, Laredo, Harlingen and Edinburg. For more information on the many ways “We make lives better®,” visit www.uthscsa.edu.

Will Sansom | EurekAlert!
Further information:
http://www.uthscsa.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>