Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse study turns fat-loss and longevity link on its head

04.05.2011
Since the 1930s scientists have proposed food restriction as a way to extend life in mice. Though feeding a reduced-calorie diet has indeed lengthened the life spans of mice, rats and many other species, new studies with dozens of different mouse strains indicate that food restriction does not work in all cases.
Diet and fat loss
Researchers at the UT Health Science Center San Antonio’s Barshop Institute for Longevity and Aging Studies, with colleagues at the University of Colorado, studied the effect of food restriction on fat and weight loss in 41 genetically different strains of mice. The scientists then correlated the amount of fat reduction to life span.

The answer: Mice that maintained their fat actually lived longer. Those that lost fat died earlier.

Contrary to view
“Indeed, the greater the fat loss, the greater the likelihood the mice would have a negative response to dietary restriction, i.e., shortened life,” said James Nelson, Ph.D., professor of physiology at the Barshop Institute. “This is contrary to the widely held view that loss of fat is important for the life-extending effect of dietary restriction. It turns the tables a bit.”

The results are expected to be published in the June issue of Aging Cell.

More study needed
Dr. Nelson’s graduate student, Chen-Yu Liao, who will soon receive his Ph.D. and advance to a postdoctoral fellowship at California’s Buck Institute for Research on Aging, cautioned that the new findings cannot be directly applied to people until similar studies are done in humans.

People are best advised to adopt a moderate approach, not losing all fat but definitely not keeping unhealthy amounts of fat, either.

“None of the mice in this study were what we would consider to be obese,” Liao said.

Genes impact effect
The findings bear out what geneticists long have said: there is nothing that works for every genotype, which is an organism’s specific and unique set of genes.

“We know that humans respond to diet very differently as individuals based on their genetics,” Dr. Nelson said. “Some have great difficulty losing weight while others have difficulty maintaining weight. If these results translate to humans, they would suggest that individuals who have difficulty losing weight may benefit from the positive effects of dietary restriction more than those who lose weight easily.”

Authors
Fat Maintenance Is a Predictor of the Murine Lifespan Response to Dietary Restriction. Chen-Yu Liao1,2, Brad A. Rikke3, Thomas E. Johnson3,4, Jonathan A.L. Gelfond2,5, Vivian Diaz2, James F. Nelson1,2 DOI: 10.1111/j.1474-9726.2011.00702.x

1Department of Physiology, UT Health Science Center San Antonio; 2Barshop Institute for Longevity and Aging Studies, UT Health Science Center San Antonio; 3Institute for Behavioral Genetics, University of Colorado, Boulder; 4Department of Integrative Physiology, University of Colorado, Boulder; 5Department of Epidemiology and Biostatistics, UT Health Science Center San Antonio

The University of Texas Health Science Center at San Antonio, one of the country’s leading health sciences universities, ranks in the top 3 percent of all institutions worldwide receiving federal funding. Research and other sponsored program activity totaled $228 million in fiscal year 2010. The university’s schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced approximately 26,000 graduates. The $744 million operating budget supports eight campuses in San Antonio, Laredo, Harlingen and Edinburg. For more information on the many ways “We make lives better®,” visit www.uthscsa.edu.

Will Sansom | EurekAlert!
Further information:
http://www.uthscsa.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>