Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse stem cell study offers new insights into body fat distribution

12.07.2010
New research being presented today (12 July) at the UK National Stem Cell Network Annual Science Meeting in Nottingham shows that adding fat to mouse stem cells grown in the lab affects their response to the signals that push them to develop into one or other of the main types of fat storage cells – subcutaneous (under the skin) or visceral (around the organs).

Visceral fat – the so-called "pot-belly" – indicates a much higher risk of cardiovascular disease and type 2 diabetes than subcutaneous fat. This discovery will help us to understand the fundamental biology underpinning these two major causes of obesity-related morbidity and mortality in the developed world.

During development, some groups of stem cells will go on to become adipose cells – the large globular cells that store and metabolise fats from our diets. This research suggests that the distribution of visceral versus subcutaneous adipose cells is at least in part down to the nutrition available to stem cells during the early stages of development.

The study, led by Professor Kevin Docherty of the University of Aberdeen, found that adding palmitate (a major component in palm oil) to mouse stem cells affected how they responded to androgen and oestrogen - the sex hormones which normally control the types of fat cells that stem cells become.

Professor Docherty said "This finding is an important insight as it suggests that nutrition in early development can affect how and where fat is stored in later life. We've known for a while that having a pot-belly suggests someone's risk of developing type 2 diabetes and heart disease is high, but there is still a lot to learn about why body fat distribution varies so much between people. Our research helps by putting another small piece into the puzzle.

"Type 2 diabetes used to be a disease that struck people in later life, but in the UK and some other developed countries we're seeing a worrying increase of this problem amongst overweight teenagers and younger adults. In the UK, 30% of teenagers are overweight or obese so it's crucial that we understand the fundamental biology of weight-related diseases so that we can develop better ways of preventing, treating and managing this serious problem."

The researchers hope that this study might lead to new insights into how to combat type 2 diabetes and cardiovascular disease.

Professor Docherty concluded: "The number one way of reducing the number of overweight people is improving diet and encouraging exercise, but we hope our research might eventually offer insights that lead to new treatments including drugs to reduce these high-risk fat stores around organs."

CONTACT

UKNSCN Media Office email: ukpo@uknscn.org or mike.davies@bbsrc.ac.uk, Tel: 01793 442 042

NOTES TO EDITORS

Humans can store fat either beneath the skin in subcutaneous cells, or around internal organs in visceral cells. Women tend to store excess fat underneath the skin, around the hips and thighs, which, although responsible for cosmetic conditions such as cellulite, is much safer than storing fat viscerally as a pot-belly which is more common amongst men.

Storing excess visceral fat is thought to greatly increase a person's risk of developing type 2 diabetes and a range of associated problems including heart disease so having more visceral fat cells could predispose a person to those problems if they are overweight.

About UKNSCN

The UK National Stem Cell Network acts as a network for stem cell researchers and all stakeholders. It aims to bring coordination and coherence to a range of national and regional activities in the field of stem cell research. Its overall mission is to promote and enhance the coordination of research across the sub-disciplines of stem cell science, thereby helping to speed to translation basic research into therapeutic applications.

2010 will be the third UKNSCN Annual Conference, following on from successful events in Edinburgh (2008) and Oxford (2009).

The UKNSCN currently receives financial support from four of the UK Research Councils:

Biotechnology and Biological Sciences Research Council (BBSRC)
Economic and Social Research Council (ESRC)
Engineering and Physical Sciences Research Council (EPSRC)
Medical Research Council (MRC)
The Network operates for all stakeholders in UK stem cell research. The secretariat is operated through BBSRC on behalf of all the Government sponsors of stem cell research, including the Research Councils, the Department of Health, the Department for Business, Innovation and Skills and the Technology Strategy Board. Its work is governed by a sponsors' Management Board, supported by an expert Advisory Committee.

Mike Davies | EurekAlert!
Further information:
http://www.uknscn.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>