Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse Nose Nerve Cells Mature After Birth, Allowing Bonding, Recognition With Mother

14.03.2011
For rodent pups, bonding with mom isn’t hard-wired in the womb. It develops over the first few weeks of life, which is achieved by their maturing sense of smell, possibly allowing these mammals a survival advantage by learning to identify mother, siblings, and home.

Blended electrophysiological, biochemical, and behavioral experiments, Minghong Ma, PhD, an associate Professor of Neuroscience at the University of Pennsylvania School of Medicine, led a study published in a recent issue of the Journal of Neuroscience. With students Anderson Lee and Jiwei He, she demonstrated that neurons in the noses of mice mature after birth.

Using patch-clamping – a technique that measures electrical signals at the cellular level -- Ma's team found that between birth and day 30 of development, normal neurons become six times more sensitive to their sibling’s scent, in this case, a fragrance called lyral. In addition, the mice transition from a relative indiscriminate response to different odors to being highly attuned to one specific smell. They also respond to that specific odor with a faster speed over time.

The olfactory marker protein (OMP) likely mediates this developmental maturation. In olfactory sensory neurons lacking OMPs, response fails to speed up over 30 days as compared to normal neurons. The authors suggest this could be due to altered intracellular communication, since loss of the protein is associated with decreased phosphorylation of an associated enzyme called adenylate cyclase, a key player in the chemical signaling underlying the sense of smell.

The team also used a novel behavioral assay to illustrate one consequence of mistakes in this cellular maturation process. Normal mouse pups, given the choice between their mother and an unrelated, lactating female, will choose to huddle with or suckle their mother 78 percent of the time. But in the absence of OMP, newborn mice fail to make that distinction.

According to Ma, the maturation of olfaction in early development could offer animals that need nursing and care for a long time before maturing (altricial species, including some mammals) a survival advantage. Rather than being hard-wired at birth, Ma says, they learn to identify their surroundings and their family. "They actually learn to find their mother, home, and siblings, and to stay alive," she says. But whether the same is true of human infants, of course, remains an open question.

One key question yet to be addressed, Ma says, is the mechanism underlying this olfactory tuning process. How, for instance, do the cells develop a faster response speed? How do they get so good at focusing on just one odorant to the exclusion of all others? And can this process be modulated by early experience? The answers to those questions, she says, could possibly provide tools to influence the bonding between mother and child in early development, and even promote social interactions in autistic children.

The article was funded by the National Institute on Deafness and Other Communication Disorders, National Institutes of Health.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania – recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://www.uphs.upenn.edu/news/News_Releases/2011/03/mouse-nose-neuron-maturation/

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>