Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse model suitable for predicting cytokine storm by antibodies such as TGN1412

10.03.2016

Researchers of the Paul-Ehrlich-Institut have developed a humanised mouse model that can be used to predict severe adverse immune reactions after administration of the monoclonal antibody TGN1412. A few years ago, the antibody led to severe immune reactions as a result of a cytokine storm in a clinical trial with healthy volunteers. The humanised mouse model can contribute to increasing the safety in first-in-man use of certain antibodies. PLOS ONE reports on the research results in his online version of March 9, 2016.

TGN1412 – the effects of the clinical trial with this humanised "superagonistic" monoclonal antibody can still be felt today. TGN1412 was developed for the treatment of rheumatoid arthritis and a particular form of leukaemia.


In the focus: T-cell-mediated immune-reactions caused by monoclonal antibodies such as TGN1412

Source: PEI

In 2006, the antibody was administrated in a first-in-man study to six healthy volunteers in the UK. All volunteers developed massive release of immunological messenger substances (cytokine storm) with life-threatening symptoms only a short time after they received TGN1412.

In the preliminary animal experiments – an important component of the required studies before first use in humans – no risks became apparent. The severe immunological reactions thus came as a surprise.

For this reason, since this event, researchers have been seeking methods of studying and estimating such severe adverse effects as a result of immunological reactions before first use in humans. Immunologists of the Paul-Ehrlich-Institut (PEI) who are supervised by and collaborating with Priv.-Doz. (associate professor) Dr Zoe Waibler, head of a temporary research group, investigated whether a humanised mouse model could be suitable for this.

They used so-called knock-out mice, in which specific genes of the immune system of the mouse are deactivated. These mice are substituted with cells of the immune system from human blood.

In addition to TGN1412, the scientists also used the monoclonal antibody OKT3, of which it is also known that it can cause severe cytokine storms. The scientists were able to detect cytokine release in the blood samples of the animals for both antibodies. Thus, for instance interferon-gamma levels increased considerably after the administration of the antibody.

Besides, the scientists observed additional effects equivalent to those observed in humans. These included the loss of leucocytes (white blood cells) after the administration of TGN1412 and the typical loss of particular surface markers (CD3) on T cells typically observed after the administration of OKT3. These cells play an important part in the human immune system.

However, what was a lot more obvious related to the clinical symptoms: The body temperature of the animals decreased. This is a sure sign of disease in mice comparable to high temperatures in humans. The general state of health of the mice, too, deteriorated significantly in only few hours. "Based on the symptoms and the blood samples in this mouse model, we can see adverse effects at an early stage without having to know in detail in advance what exactly we are looking for. This is a significant use of the mouse model", as Ms Waibler explained the results.

This animal model, above all, makes immunological effects visible which are mediated via T cells of the immune system. Even though the animal model involves a high workload, it opens up options of approaches to improving safety before first use in humans during clinical trials of monoclonal antibodies, for which a T-cell-mediated reaction could be expected and for which a severe immune reaction must be ruled out.

Original Publication

Weißmüller S, Bauer S, Kreuz D, Schnierle B, Kalinke U, Kirberg J, Hanschmann KM, Waibler Z (2016): TGN1412 induces lymphopenia and human cytokine release in a humanized mouse model.
PLOS ONEMar 9 [Epub ahead of print].
DOI: 10.1371/journal.pone.0149093

Weitere Informationen:

http://dx.plos.org/10.1371/journal.pone.0149093 - Online-Version of the Publication
http://www.pei.de/EN/information/journalists-press/press-releases/2016/07-mouse-... This press release on the PEI-Website

Dr. Susanne Stöcker | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>