Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse model suitable for predicting cytokine storm by antibodies such as TGN1412

10.03.2016

Researchers of the Paul-Ehrlich-Institut have developed a humanised mouse model that can be used to predict severe adverse immune reactions after administration of the monoclonal antibody TGN1412. A few years ago, the antibody led to severe immune reactions as a result of a cytokine storm in a clinical trial with healthy volunteers. The humanised mouse model can contribute to increasing the safety in first-in-man use of certain antibodies. PLOS ONE reports on the research results in his online version of March 9, 2016.

TGN1412 – the effects of the clinical trial with this humanised "superagonistic" monoclonal antibody can still be felt today. TGN1412 was developed for the treatment of rheumatoid arthritis and a particular form of leukaemia.


In the focus: T-cell-mediated immune-reactions caused by monoclonal antibodies such as TGN1412

Source: PEI

In 2006, the antibody was administrated in a first-in-man study to six healthy volunteers in the UK. All volunteers developed massive release of immunological messenger substances (cytokine storm) with life-threatening symptoms only a short time after they received TGN1412.

In the preliminary animal experiments – an important component of the required studies before first use in humans – no risks became apparent. The severe immunological reactions thus came as a surprise.

For this reason, since this event, researchers have been seeking methods of studying and estimating such severe adverse effects as a result of immunological reactions before first use in humans. Immunologists of the Paul-Ehrlich-Institut (PEI) who are supervised by and collaborating with Priv.-Doz. (associate professor) Dr Zoe Waibler, head of a temporary research group, investigated whether a humanised mouse model could be suitable for this.

They used so-called knock-out mice, in which specific genes of the immune system of the mouse are deactivated. These mice are substituted with cells of the immune system from human blood.

In addition to TGN1412, the scientists also used the monoclonal antibody OKT3, of which it is also known that it can cause severe cytokine storms. The scientists were able to detect cytokine release in the blood samples of the animals for both antibodies. Thus, for instance interferon-gamma levels increased considerably after the administration of the antibody.

Besides, the scientists observed additional effects equivalent to those observed in humans. These included the loss of leucocytes (white blood cells) after the administration of TGN1412 and the typical loss of particular surface markers (CD3) on T cells typically observed after the administration of OKT3. These cells play an important part in the human immune system.

However, what was a lot more obvious related to the clinical symptoms: The body temperature of the animals decreased. This is a sure sign of disease in mice comparable to high temperatures in humans. The general state of health of the mice, too, deteriorated significantly in only few hours. "Based on the symptoms and the blood samples in this mouse model, we can see adverse effects at an early stage without having to know in detail in advance what exactly we are looking for. This is a significant use of the mouse model", as Ms Waibler explained the results.

This animal model, above all, makes immunological effects visible which are mediated via T cells of the immune system. Even though the animal model involves a high workload, it opens up options of approaches to improving safety before first use in humans during clinical trials of monoclonal antibodies, for which a T-cell-mediated reaction could be expected and for which a severe immune reaction must be ruled out.

Original Publication

Weißmüller S, Bauer S, Kreuz D, Schnierle B, Kalinke U, Kirberg J, Hanschmann KM, Waibler Z (2016): TGN1412 induces lymphopenia and human cytokine release in a humanized mouse model.
PLOS ONEMar 9 [Epub ahead of print].
DOI: 10.1371/journal.pone.0149093

Weitere Informationen:

http://dx.plos.org/10.1371/journal.pone.0149093 - Online-Version of the Publication
http://www.pei.de/EN/information/journalists-press/press-releases/2016/07-mouse-... This press release on the PEI-Website

Dr. Susanne Stöcker | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>