Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse model confirms mutated protein's role in dementia

03.11.2010
A team of scientists from Japan and the University of California, San Diego School of Medicine have created a new mouse model that confirms that mutations of a protein called beta-synuclein promote neurodegeneration. The discovery creates a potential new target for developing treatments of diseases like Parkinson's and Alzheimer's.

The work is published in today's issue of Nature Communications. Lead author is Makoto Hashimoto of the Division of Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience, with colleagues including Eliezer Masliah, MD, professor of neurosciences and pathology in the UC San Diego School of Medicine, Edward Rockenstein, a research associate in UCSD's Experimental Neuropath Laboratory and Albert R. La Spada, MD, PhD, professor of cellular and molecular medicine, chief of the Division of Genetics in the Department of Pediatrics and associate director of the Institute for Genomic Medicine at UC San Diego.

In 2004, La Spada discovered mutations in a family afflicted with a neurological disorder known as Dementia with Lewy Bodies. DLB is one of the most common types of progressive dementia, combining features of both Alzheimer's and Parkinson's diseases. Lewy bodies are abnormal aggregates of proteins. There are no known therapies to stop or slow the DLB's progression. There is no cure.

In the 2004 study, La Spada and colleagues found that mutations of the naturally occurring B-synuclein protein in DLB patients "were strong strongly suggestive of being pathogenic." That is, the mutated protein caused or was a cause of the disease. But the findings were not definitive.

The newly published research describes the creation of a transgenic mouse model that expresses the B-synuclein mutation. The mice suffer from neurodegenerative disease, validating La Spada's earlier work.

"Beta-synuclein is interesting because it is closely related to alpha-synuclein, a protein that can cause Parkinson's disease by being mutated or over-expressed," said La Spada. "A-synuclein is viewed as central to Parkinson's disease pathogenesis. The question has been: could B-synuclein also promote neurodegeneration because it's similar in its sequence and expression pattern to A-synuclein? This study shows that the answer is yes."

These findings, said La Spada, establish B-synuclein's links to Parkinson's disease and related disorders, making it a new and, now, proven target for potential therapies.

Co-authors of the study are Masaya Fujita, Shuei Sugama, Kazunari Sekiyama, Akio Sekigawa, Masaaki Nakai, Masaaki Waragai, Yoshiki Takamatsu and Jianshe Wei of the Division of Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience; Tohru Tsukui of the Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University; Takato Takenouchi of the Division of Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience and the Transgenic Animal Research Center, National Institute of Agrobiological Sciences in Japan; and Satoshi Inoue of Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University and Department of Anti-Aging, Graduate School of Medicine, University of Tokyo.

Funding for this study came in part from grants by Science Research, the Cell Innovation Project; Challenging Exploratory Research, the National Institute of Biomedical Innovation, the Takeda Foundation, the Novartis Foundation for Gerontological Research and the National Institutes of Health.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>