Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mouse model confirms mutated protein's role in dementia

A team of scientists from Japan and the University of California, San Diego School of Medicine have created a new mouse model that confirms that mutations of a protein called beta-synuclein promote neurodegeneration. The discovery creates a potential new target for developing treatments of diseases like Parkinson's and Alzheimer's.

The work is published in today's issue of Nature Communications. Lead author is Makoto Hashimoto of the Division of Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience, with colleagues including Eliezer Masliah, MD, professor of neurosciences and pathology in the UC San Diego School of Medicine, Edward Rockenstein, a research associate in UCSD's Experimental Neuropath Laboratory and Albert R. La Spada, MD, PhD, professor of cellular and molecular medicine, chief of the Division of Genetics in the Department of Pediatrics and associate director of the Institute for Genomic Medicine at UC San Diego.

In 2004, La Spada discovered mutations in a family afflicted with a neurological disorder known as Dementia with Lewy Bodies. DLB is one of the most common types of progressive dementia, combining features of both Alzheimer's and Parkinson's diseases. Lewy bodies are abnormal aggregates of proteins. There are no known therapies to stop or slow the DLB's progression. There is no cure.

In the 2004 study, La Spada and colleagues found that mutations of the naturally occurring B-synuclein protein in DLB patients "were strong strongly suggestive of being pathogenic." That is, the mutated protein caused or was a cause of the disease. But the findings were not definitive.

The newly published research describes the creation of a transgenic mouse model that expresses the B-synuclein mutation. The mice suffer from neurodegenerative disease, validating La Spada's earlier work.

"Beta-synuclein is interesting because it is closely related to alpha-synuclein, a protein that can cause Parkinson's disease by being mutated or over-expressed," said La Spada. "A-synuclein is viewed as central to Parkinson's disease pathogenesis. The question has been: could B-synuclein also promote neurodegeneration because it's similar in its sequence and expression pattern to A-synuclein? This study shows that the answer is yes."

These findings, said La Spada, establish B-synuclein's links to Parkinson's disease and related disorders, making it a new and, now, proven target for potential therapies.

Co-authors of the study are Masaya Fujita, Shuei Sugama, Kazunari Sekiyama, Akio Sekigawa, Masaaki Nakai, Masaaki Waragai, Yoshiki Takamatsu and Jianshe Wei of the Division of Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience; Tohru Tsukui of the Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University; Takato Takenouchi of the Division of Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience and the Transgenic Animal Research Center, National Institute of Agrobiological Sciences in Japan; and Satoshi Inoue of Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University and Department of Anti-Aging, Graduate School of Medicine, University of Tokyo.

Funding for this study came in part from grants by Science Research, the Cell Innovation Project; Challenging Exploratory Research, the National Institute of Biomedical Innovation, the Takeda Foundation, the Novartis Foundation for Gerontological Research and the National Institutes of Health.

Scott LaFee | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>