Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel mouse model for autism yields clues to a 50-year-old mystery

21.03.2012
Early disruptions in serotonin signaling in the brain may contribute to autism spectrum disorder (ASD), and other "enduring effects on behavior," Vanderbilt University researchers report.

Serotonin is a brain chemical that carries signals across the synapse, or gap between nerve cells. The supply of serotonin is regulated by the serotonin transporter (SERT). In 2005, a team of Vanderbilt researchers led by Randy Blakely and James Sutcliffe identified rare genetic variations in children with ASD that disrupt SERT function.

In a new study published this week in the Proceedings of the National Academy of Sciences (PNAS), the researchers report the creation of a mouse model that expressed the most common of these variations.

The change is a very small one in biochemical terms, yet it appears to cause SERT in the brain to go into "overdrive" and restrict the availability of serotonin at synapses.

"The SERT protein in the brain of our mice appears to exhibit the exaggerated function and lack of regulation we saw using cell models," said Blakely, director of the Vanderbilt Silvio O. Conte Center for Neuroscience Research.

"Remarkably, these mice show changes in social behavior and communication from early life that may parallel aspects of ASD," noted first author Jeremy Veenstra-VanderWeele, assistant professor of Psychiatry, Pediatrics and Pharmacology.

The researchers conclude that a lack of serotonin during development may lead to long-standing changes in the way the brain is "wired."

In 1961, investigators at Yale discovered that as many as 30 percent of children with autism have elevated blood levels of serotonin, a finding described as "hyperserotonemia."

Since then, these findings have been replicated many times. Indeed, hyperserotonemia is the most consistently reported biochemical finding in autism, and is a highly inherited trait. Yet, the cause or significance of this "bio-marker" has remained shrouded in mystery.

Until now. In the current study, Veenstra-VanderWeele, Blakely and their colleagues showed that they could produce hyperserotonemia in mice that express a variant of a human SERT gene associated with autism.

Because the genetic change makes the transporter more active, higher levels of serotonin accumulate in platelets and therefore in the bloodstream. In the brain, overactive transporters should have the opposite effect – lowering serotonin levels at the synapse and producing behavioral changes relevant to autism. That's exactly what the researchers observed.

Of course, no mouse model can completely explain or reproduce the human condition. Neither does a single genetic variation cause autism. Experts believe the wide spectrum of autistic behaviors represents a complex web of interactions between many genes and environmental factors.

But animal models are critical to exploring more deeply the basis for the developmental changes that are observed in ASD. The scientists are using these mice to explore how altered brain serotonin levels during development may produce long-lasting changes in behavior and impact the risk for autism.

Scientists from the National Institute of Mental Health, the Medical University of South Carolina and the University of Texas Health Science Center in San Antonio contributed to the study.

The research was supported by the National Institutes of Health, the advocacy organization Autism Speaks and the American Academy of Child and Adolescent Psychiatry.

Bill Snyder | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>