Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mount Sinai researchers discover origin of immune cells in the brain

Mount Sinai researchers have discovered that microglia, the immune cells that reside in the brain, have a unique origin and are formed shortly after conception.

It was previously thought that microglia originated at the same time as macrophages, which are other immune cells that are thought to develop at birth. This groundbreaking discovery has the potential to lead to future treatments of degenerative brain diseases such as Alzheimer's and autoimmune diseases such as multiple sclerosis. The study is published online October 21 in Science Express.

Microglia are thought to play an important role in the development of many brain diseases, and that defective microglia could lead to the release of inflammatory molecules, which could participate in the development of degenerative brain diseases.

"This really is a startling discovery," said Miriam Merad, MD, PhD, Associate Professor of Gene and Cell Medicine at Mount Sinai School of Medicine and Principal Investigator of the study. "We've shown that the precursor cells develop into microglia only during a short period after conception. Now that we know that microglia originate in early embryos, theoretically we should be able to generate microglia from embryonic stem cells to treat brain diseases caused by defective microglia. This is a very good example of why scientists need to be able to conduct research with embryonic stem cells."

For the first part of the study, researchers transplanted blood cell precursors, which are precursors for all macrophages, from one newborn mouse to another. The transplanted cells could not be differentiated in the recipient animal. These results suggest that microglia originated prior to birth during embryonic life.

Next, researchers used a mouse model that expresses fluorescent biosensors in blood precursors to determine when, during embryonic age, precursors develop into microglia. Once activated the fluorescence does not go away and all cells that develop from the fluorescent precursors should remain fluorescent. The researchers activated the fluorescence as early as seven days after conception. When they examined adult mice they found fluorescent microglia but no fluorescent macrophages. These results established that microglia are unique in that they originate from precursors that arise around seven days after conception.

"Moving forward we need to further study the normal development of precursor blood cells into microglia, which should help identify the role of microglia in various brain diseases and ultimately lead to advances in treatments," said Dr. Merad.

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of few medical schools embedded in a hospital in the United States. It has more than 3,400 faculty in 32 departments and 15 institutes, and ranks among the top 20 medical schools both in National Institute of Health funding and by U.S. News & World Report. The school received the 2009 Spencer Foreman Award for Outstanding Community Service from the Association of American Medical Colleges.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation's oldest, largest and most-respected voluntary hospitals. U.S. News & World Report consistently ranks The Mount Sinai Hospital among the nation's best hospitals based on reputation, patient safety, and other patient-care factors. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 530,000 outpatient visits took place.

For more information, visit
Follow us on Twitter @mountsinainyc.

Mount Sinai Press Office | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>