Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mount Sinai researchers discover new mechanism behind cellular energy conversion

19.08.2010
Researchers from Mount Sinai School of Medicine have enhanced our understanding of the mechanism by which cells achieve energy conversion, the process in which food is converted into the energy required by cells. This groundbreaking research helps scientists gain atomic-level insight into how organisms synthesize their major form of chemical energy. The researchers' findings were published in the August issue of PLoS Biology.

Cells use the enzyme ATP synthase to generate a chemical called ATP, the form of energy cells use to function. Structurally, ATP synthase is a nano-machine, a cellular "motor" that consists of proton turbines, or rotor rings, with the output being ATP. The investigators wanted to find out more about how these ATP synthase rotors work.

David Hicks, PhD, Assistant Professor of Pharmacology & Systems Therapeutics and Terry Krulwich, PhD, Sharon & Frederick A. Klingenstein-Nathan G. Kase, MD Professor of Pharmacology & Systems Therapeutics, led the Mount Sinai-based part of the effort. They and their co-investigators, Thomas Meier, PhD, and two members of his research team at the Max Planck Institute of Biophysics in Germany, grew three-dimensional protein crystals of an unusually stable rotor found in bacteria called Bacillus pseudofirmus and evaluated them using X-ray technology.

The researchers were surprised to find that these ATP synthase rotor rings use a water molecule as part of the rotary mechanism of ATP synthesis, providing a clearer understanding of how these nano-machines function. Previous studies of a rotor from a blue-green alga, the only other proton-moving rotor observed at this atomic level, showed that it did not use a water molecule.

With this new insight, they were able to infer how ATP synthase captures the protons that drive the rotation of the "motor" and visualize how those protons remain bound to the rotor. This discovery has added interest because the rotor structure of these bacteria is similar in some ways to the motors driving ATP synthesis in human cells and pathogens like the tuberculosis bacteria.

"We are excited about the broad implications of these data in helping us move toward a more detailed model of the mechanisms of action behind cellular energy conversion," said Dr. Krulwich. "These findings provide a launching pad for better understanding a basic life process in organisms ranging from bacteria to humans. We look forward to studying this development further."

Drs. Hicks and Krulwich and the Meier team will continue studying this finding and plan to further evaluate these cellular nano-machines. Working with this discovery, they will next evaluate mutations or malfunctions in the ATP synthase rotor.

This research is supported by the National Institute of General Medical Studies of the National Institutes of Health.

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of few medical schools embedded in a hospital in the United States. It has more than 3,400 faculty in 32 departments and 15 institutes, and ranks among the top 20 medical schools both in National Institute of Health funding and by U.S. News & World Report. The school received the 2009 Spencer Foreman Award for Outstanding Community Service from the Association of American Medical Colleges.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation's oldest, largest and most-respected voluntary hospitals. In 2009, U.S. News & World Report ranked The Mount Sinai Hospital among the nation's top 20 hospitals based on reputation, patient safety, and other patient-care factors. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 530,000 outpatient visits took place.

For more information, visit www.mountsinai.org
Follow us on Twitter @mountsinainyc

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu
http://www.mountsinai.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>