Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mount Sinai researchers develop new gene therapy for heart failure

29.06.2011
Researchers at Mount Sinai School of Medicine have found in a Phase II trial that a gene therapy developed at Mount Sinai stabilized or improved cardiac function in people with severe heart failure.

Patients receiving a high dose of the therapy, called SERCA2a, experienced substantial clinical benefit and significantly reduced cardiovascular hospitalizations, addressing a critical unmet need in this population. The data are published online in the June 27 issue of the American Heart Association journal Circulation.

SERCA2a is delivered via an adeno-associated virus vector—an inactive virus that acts as a medication transporter—into cardiac cells. The therapy stimulates production of an enzyme within these cells that enables the heart to pump more effectively in people with advanced heart failure. After one year, patients who were administered a high dose SERCA2a demonstrated improvement or stabilization. Gene therapy with SERCA2a was also found to be safe in this sick patient population, with no increases in adverse events, disease-related events, laboratory abnormalities, or arrhythmias compared to placebo.

"Few treatment options have shown such improved clinical outcomes in this patient population in the last decade," said Roger J. Hajjar, MD, Research Director of Mount Sinai's Wiener Family Cardiovascular Research Laboratories, and the Arthur and Janet C. Ross Professor of Medicine, and Gene and Cell Medicine, Mount Sinai School of Medicine. "This study establishes a new paradigm for the treatment of heart failure by clinically validating SERCA2a as a novel target. In addition, by showing that adeno-associated vectors are safe to use in patients with advanced heart failure, this study ushers a new era for gene therapy for the treatment of failing hearts."

The CUPID (Calcium Up-regulation by Percutaneous administration of gene therapy In cardiac Disease) trial is a randomized, double-blind, placebo-controlled study, which enrolled 39 patients with advanced heart failure to study the safety and efficacy of SERCA2a. Patients were randomized to receive SERCA2a gene delivery in one of three doses or placebo, and were evaluated over one year. The treatment is delivered directly to the patient's heart during a routine outpatient cardiac catheterization procedure.

Patients in the high-dose SERCA2a group demonstrated improvement and/or stabilization in symptoms, overall heart function, biomarker activity, and ventricular mechanics and function. They also saw a dramatic reduction in cardiovascular hospitalizations, averaging 0.4 days versus 4.5 days in the placebo group.

"Even though heart failure mortality has decreased over the last decade with the help of standard pharmacological and device therapies, patients with advanced heart failure continue to die at high rates. The CUPID trial offers a new therapeutic option for these patients," said Dr. Hajjar.

Led by Dr. Hajjar, the Mount Sinai team discovered the landmark potential of the cardiac-specific target in 1999 and has been pursuing its potential as a treatment delivered via gene therapy in state-of-the-art custom built laboratories at Mount Sinai School of Medicine in New York.

According to the U.S. Centers for Disease Control and Prevention, about 5.8 million Americans suffer from heart failure, and 670,000 new cases are diagnosed each year. One in five people who have heart failure die within one year of diagnosis. In 2010, heart failure will cost the United States $39.2 billion, including the cost of health care services, medications, and lost productivity. Heart failure is most often treated with aggressive medical and device therapy, but has no cure. The most common symptoms of heart failure are shortness of breath, feeling tired, and swelling in the ankles, feet, legs, and sometimes the abdomen.

The CUPID Trial is funded by Celladon Corporation. The company was co-founded by Dr. Hajjar who has an equity interest in Celladon Corporation and participates on an Advisory Board.

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of few medical schools embedded in a hospital in the United States. It has more than 3,400 faculty in 32 departments and 15 institutes, and ranks among the top 20 medical schools both in National Institute of Health funding and by U.S. News & World Report. The school received the 2009 Spencer Foreman Award for Outstanding Community Service from the Association of American Medical Colleges.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation's oldest, largest and most-respected voluntary hospitals. U.S. News & World Report consistently ranks The Mount Sinai Hospital among the nation's best hospitals based on reputation, patient safety, and other patient-care factors. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 530,000 outpatient visits took place.

For more information, visit http://www.mountsinai.org/.

Find Mount Sinai on:
Facebook: http://www.facebook.com/mountsinainyc
Twitter @mountsinainyc
YouTube: http://www.youtube.com/mountsinainy

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>