Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mould toxins more prevalent and hazardous than thought

09.12.2008
Mould toxins in buildings damaged by moisture are considerably more prevalent than was previously thought, according to new international research.

Erica Bloom from the Division of Medical Microbiology at Lund University in Sweden has contributed to research in this field by analyzing dust and materials samples from buildings damaged by mould. Virtually all of the samples contained toxins from mould.

"Previously it was claimed that the occurrence of mould does not necessarily mean that there are toxins present. But they are! On the contrary, we can assume that wherever there is visible mould, there are also mould toxins," says Erica Bloom.

And toxins produced by mould are more potent than was previously thought. It has now been shown, for instance, that mould toxins (mycotoxins) not only directly kill cells but can also affect immune cells in a way that increases the risk of allergies. Even incredibly tiny amounts of these toxins can do this, as little as a few picograms (a picogram is one millionth of a millionth of a gram).

New research also shows that mould releases extremely small particles that remain suspended in the air, and can get into our lungs much more easily than the spores that have previously been focused on. This can increase exposure to mould and mycotoxins hundreds of times over compared with previous calculations. And mycotoxins have further been shown in laboratory studies to have a synergistic effect: the effect of two toxins is not merely 1 + 1 but much greater.

Using methods from analytical chemistry, Erica Bloom analyzed dust sample and samples from construction materials such as molding, drywall, and wallpaper from buildings damaged by mould. She acquired nearly all of the samples from professional damage assessors.

"We looked at 6-7 different mycotoxins and found them in a majority of the samples. And since there are at least 400 sorts of mycotoxins, what we have seen is probably just the tip of the iceberg," she says.

Mould in buildings is a phenomenon that has been known since the times of the Old Testament. In Leviticus mention is made of spots that constitute "a fretting leprosy in the house," and should be scraped off and thrown away "in some unclean place."

"Actually, we haven't made all that much progress today," maintains Erica Bloom. "We know that people are sickened by buildings damaged by moisture, but whether this is primarily caused by mycotoxins, bacteria, or gases given off by the moist building materials, this we don't know exactly. We should therefore observe the principle of caution and renovate the building as soon as a moisture problem or mould is found."

After she defends her thesis on December 6, Erica Bloom will start working with indoor-environment issues at the IVL, the Swedish Environmental Research Institute. Her thesis director, Lennart Larsson, is continuing his research with the Lund team, for example participating in a major EU project on indoor environments in schools and their possible connections to asthma and allergies.

Erica Bloom can be reached at phone: +46 (0)46-173289; Erica.Bloom@med.lu.se.

Pressofficer Ingela Björck; ingela.bjorck@info.lu.se; +46-46 222 76 46

Ingela Björck | idw
Further information:
http://www.lu.se/o.o.i.s?id=12588&postid=1265413

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>