Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mould toxins more prevalent and hazardous than thought

Mould toxins in buildings damaged by moisture are considerably more prevalent than was previously thought, according to new international research.

Erica Bloom from the Division of Medical Microbiology at Lund University in Sweden has contributed to research in this field by analyzing dust and materials samples from buildings damaged by mould. Virtually all of the samples contained toxins from mould.

"Previously it was claimed that the occurrence of mould does not necessarily mean that there are toxins present. But they are! On the contrary, we can assume that wherever there is visible mould, there are also mould toxins," says Erica Bloom.

And toxins produced by mould are more potent than was previously thought. It has now been shown, for instance, that mould toxins (mycotoxins) not only directly kill cells but can also affect immune cells in a way that increases the risk of allergies. Even incredibly tiny amounts of these toxins can do this, as little as a few picograms (a picogram is one millionth of a millionth of a gram).

New research also shows that mould releases extremely small particles that remain suspended in the air, and can get into our lungs much more easily than the spores that have previously been focused on. This can increase exposure to mould and mycotoxins hundreds of times over compared with previous calculations. And mycotoxins have further been shown in laboratory studies to have a synergistic effect: the effect of two toxins is not merely 1 + 1 but much greater.

Using methods from analytical chemistry, Erica Bloom analyzed dust sample and samples from construction materials such as molding, drywall, and wallpaper from buildings damaged by mould. She acquired nearly all of the samples from professional damage assessors.

"We looked at 6-7 different mycotoxins and found them in a majority of the samples. And since there are at least 400 sorts of mycotoxins, what we have seen is probably just the tip of the iceberg," she says.

Mould in buildings is a phenomenon that has been known since the times of the Old Testament. In Leviticus mention is made of spots that constitute "a fretting leprosy in the house," and should be scraped off and thrown away "in some unclean place."

"Actually, we haven't made all that much progress today," maintains Erica Bloom. "We know that people are sickened by buildings damaged by moisture, but whether this is primarily caused by mycotoxins, bacteria, or gases given off by the moist building materials, this we don't know exactly. We should therefore observe the principle of caution and renovate the building as soon as a moisture problem or mould is found."

After she defends her thesis on December 6, Erica Bloom will start working with indoor-environment issues at the IVL, the Swedish Environmental Research Institute. Her thesis director, Lennart Larsson, is continuing his research with the Lund team, for example participating in a major EU project on indoor environments in schools and their possible connections to asthma and allergies.

Erica Bloom can be reached at phone: +46 (0)46-173289;

Pressofficer Ingela Björck;; +46-46 222 76 46

Ingela Björck | idw
Further information:

More articles from Life Sciences:

nachricht Sweetening neurotransmitter receptors and other neuronal proteins
28.10.2016 | Max-Planck-Institut für Hirnforschung

nachricht A new look at thyroid diseases
28.10.2016 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

A new look at thyroid diseases

28.10.2016 | Life Sciences

Sweetening neurotransmitter receptors and other neuronal proteins

28.10.2016 | Life Sciences

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

More VideoLinks >>>