Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Motional layers in the brain

08.08.2013
Neurobiologists discover elementary motion detectors in the fruit fly

Recognising movement and its direction is one of the first and most important processing steps in any visual system. By this way, nearby predators or prey can be detected and even one’s own movements are controlled.


In the brains of fruit flies, specific neurons are tuned for directional information about a movement and pass this information into separate, independent layers of the brain. © MPI of Neurobiology / Borst

More than fifty years ago, a mathematical model predicted how elementary motion detectors must be structured in the brain. However, which nerve cells perform this job and how they are actually connected remained a mystery. Scientists at the Max Planck Institute of Neurobiology in Martinsried have now come one crucial step closer to this “holy grail of motion vision”:

They identified the cells that represent these so-called "elementary motion detectors" in the fruit fly brain. The results show that motion of an observed object is processed in two separate pathways. In each pathway, motion information is processed independently of one another and sorted according to its direction.

Ramón y Cajal, the famous neuroanatomist, was the first to examine the brains of flies. Almost a century ago, he thus discovered a group of cells he described as “curious elements with two tufts”. About 50 years later, German physicist Werner Reichardt postulated from his behavioural experiments with flies that they possess “elementary motion detectors”, as he referred to them. These detectors compare changes in luminance between two neighbouring photoreceptor units, or facets, in the fruit fly’s eye for every point in the visual space. The direction of a local movement is then calculated from this. At least, that is what the theory predicts. Since that time, the fruit fly research community has been speculating about whether these “two-tufted cells” described by Cajal are the mysterious elementary motion detectors.

The answer to this question has been slow in coming, as the tufted cells are extremely small – much too small for sticking an electrode into them and capturing their electrical signals. Now, Alexander Borst and his group at the Max Planck- Institute of Neurobiology have succeeded in making a breakthrough with the aid of a calcium indicator. These fluorescent proteins are formed by the neurons themselves and change their fluorescence when the cells are active. It thus finally became possible for the scientists to observe and measure the activity of the tufted cells under the microscope. The results prove that these cells actually are the elementary motion detectors predicted by Werner Reichardt.

As further experiments have shown, the tufted cells can be divided into two groups. One group (T4 cells) only reacts to a transition from dark to light caused by motion, while the other group (T5 cells) reacts oppositely – only for light-to-dark edges. In every group there are four subgroups, each of which only responds to movements in a specific direction – to the right, left, upwards or downwards. The neurons in these directionally selective groups release their information into layers of subsequent nerve tissue that are completely separated from one another. There, large neurons use these signals for visual flight control, generating the appropriate commands for the flight musculature, for example. This could be impressively proven by the scientists: When they blocked the T4 cells, the neurons connected downstream and the fruit flies themselves were shown in behavioural tests to be blind to motions caused by dark-to-light edges. When the T5 cells were blocked, light-to-dark edges could no longer be perceived.

In discussions about their research results, which have just been published in the scientific journal Nature, both lead authors, Matt Maisak and Jürgen Haag, were very impressed with the “cleanly differentiated, yet highly ordered” motion information within the brains of the fruit flies. Alexander Borst, head of the study, adds: “That was real teamwork – almost all of the members in my department took part in the experiments. One group carried out the calcium measurements, another worked on the electrophysiology, and a third made the behavioural measurements. They all pulled together. It was a wonderful experience.” And it should continue like this, since the scientists are already turning to the next mammoth challenge: they would now like to identify the neurons that deliver the input signals to the elementary motion detectors. According to Reichardt, the two signals coming from neighbouring photoreceptors in the eye have to be delayed in relation to one another. “That is going to be really exciting!” says Alexander Borst.

Contact

Dr. Stefanie Merker
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3514
Email: merker@­neuro.mpg.de
Prof. Dr. Alexander Borst
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3251
Fax: +49 89 8578-3252
Email: borst@­neuro.mpg.de
Original publication
Matthew S Maisak, Jürgen Haag, Georg Ammer, Etienne Serbe, Matthias Meier, Aljoscha Leonhardt, Tabea Schilling, Armin Bahl, Gerald Rubin, Aljoscha Nern, Barry Dickson, Dierk F Reiff, Elisabeth Hopp, Alexander Borst
A directional tuning map of Drosophila elementary motion detectors
Nature, 8 August 2013

Dr. Stefanie Merker | Max-Planck-Institute
Further information:
http://www.mpg.de/7492831/drosophila-motion-detectors

More articles from Life Sciences:

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>