Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Motional layers in the brain

08.08.2013
Neurobiologists discover elementary motion detectors in the fruit fly

Recognising movement and its direction is one of the first and most important processing steps in any visual system. By this way, nearby predators or prey can be detected and even one’s own movements are controlled.


In the brains of fruit flies, specific neurons are tuned for directional information about a movement and pass this information into separate, independent layers of the brain. © MPI of Neurobiology / Borst

More than fifty years ago, a mathematical model predicted how elementary motion detectors must be structured in the brain. However, which nerve cells perform this job and how they are actually connected remained a mystery. Scientists at the Max Planck Institute of Neurobiology in Martinsried have now come one crucial step closer to this “holy grail of motion vision”:

They identified the cells that represent these so-called "elementary motion detectors" in the fruit fly brain. The results show that motion of an observed object is processed in two separate pathways. In each pathway, motion information is processed independently of one another and sorted according to its direction.

Ramón y Cajal, the famous neuroanatomist, was the first to examine the brains of flies. Almost a century ago, he thus discovered a group of cells he described as “curious elements with two tufts”. About 50 years later, German physicist Werner Reichardt postulated from his behavioural experiments with flies that they possess “elementary motion detectors”, as he referred to them. These detectors compare changes in luminance between two neighbouring photoreceptor units, or facets, in the fruit fly’s eye for every point in the visual space. The direction of a local movement is then calculated from this. At least, that is what the theory predicts. Since that time, the fruit fly research community has been speculating about whether these “two-tufted cells” described by Cajal are the mysterious elementary motion detectors.

The answer to this question has been slow in coming, as the tufted cells are extremely small – much too small for sticking an electrode into them and capturing their electrical signals. Now, Alexander Borst and his group at the Max Planck- Institute of Neurobiology have succeeded in making a breakthrough with the aid of a calcium indicator. These fluorescent proteins are formed by the neurons themselves and change their fluorescence when the cells are active. It thus finally became possible for the scientists to observe and measure the activity of the tufted cells under the microscope. The results prove that these cells actually are the elementary motion detectors predicted by Werner Reichardt.

As further experiments have shown, the tufted cells can be divided into two groups. One group (T4 cells) only reacts to a transition from dark to light caused by motion, while the other group (T5 cells) reacts oppositely – only for light-to-dark edges. In every group there are four subgroups, each of which only responds to movements in a specific direction – to the right, left, upwards or downwards. The neurons in these directionally selective groups release their information into layers of subsequent nerve tissue that are completely separated from one another. There, large neurons use these signals for visual flight control, generating the appropriate commands for the flight musculature, for example. This could be impressively proven by the scientists: When they blocked the T4 cells, the neurons connected downstream and the fruit flies themselves were shown in behavioural tests to be blind to motions caused by dark-to-light edges. When the T5 cells were blocked, light-to-dark edges could no longer be perceived.

In discussions about their research results, which have just been published in the scientific journal Nature, both lead authors, Matt Maisak and Jürgen Haag, were very impressed with the “cleanly differentiated, yet highly ordered” motion information within the brains of the fruit flies. Alexander Borst, head of the study, adds: “That was real teamwork – almost all of the members in my department took part in the experiments. One group carried out the calcium measurements, another worked on the electrophysiology, and a third made the behavioural measurements. They all pulled together. It was a wonderful experience.” And it should continue like this, since the scientists are already turning to the next mammoth challenge: they would now like to identify the neurons that deliver the input signals to the elementary motion detectors. According to Reichardt, the two signals coming from neighbouring photoreceptors in the eye have to be delayed in relation to one another. “That is going to be really exciting!” says Alexander Borst.

Contact

Dr. Stefanie Merker
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3514
Email: merker@­neuro.mpg.de
Prof. Dr. Alexander Borst
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3251
Fax: +49 89 8578-3252
Email: borst@­neuro.mpg.de
Original publication
Matthew S Maisak, Jürgen Haag, Georg Ammer, Etienne Serbe, Matthias Meier, Aljoscha Leonhardt, Tabea Schilling, Armin Bahl, Gerald Rubin, Aljoscha Nern, Barry Dickson, Dierk F Reiff, Elisabeth Hopp, Alexander Borst
A directional tuning map of Drosophila elementary motion detectors
Nature, 8 August 2013

Dr. Stefanie Merker | Max-Planck-Institute
Further information:
http://www.mpg.de/7492831/drosophila-motion-detectors

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>