Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mother of a Goose! - Giant ocean-going geese with bony-teeth once roamed across SE England

29.09.2008
A 50 million year old skull reveals that huge birds with a 5 metre wingspan once skimmed across the waters that covered what is now London, Essex and Kent. These giant ocean-going relatives of ducks and geese also had a rather bizarre attribute for a bird: their beaks were lined with bony-teeth.

It may be a few weeks until the British pantomine season kicks-off, but this new fossil from the Isle of Sheppey is giving 'Mother Goose' an entirely new meaning.


Artists reconstruction of a giant pseudo-toothed bird. Picture credit Ludger Bollen, from \"Der Flug des Archaeopteryx\", Quelle+Meyer Vlg.

Described today (September 26) by Gerald Mayr, Senckenberg Research Institute and Natural History Museum, in the journal Palaeontology, the skull belongs to Dasornis, a bony-toothed bird, or pelagornithid, and was discovered in the London Clay, which lies under much of London, Essex and northern Kent in SE England. The occurrence of bony-toothed birds in these deposits has been known for a long time, but the new fossil is one of the best skulls ever found, and preserves previously unknown details of the anatomy of these strange creatures.

With a five metre wingspan, these huge birds were similar to albatross in their way of life. Albatross have the largest wingspan of any living bird, but that of Dasornis was over a meter and half greater. Despite these similarities, the latest research suggests that the closest living relatives of Dasornis and its fossil kin are ducks and geese.

"Imagine a bird like an ocean-going goose, almost the size of a small plane! By today's standards these were pretty bizarre animals, but perhaps the strangest thing about them is that they had sharp, tooth-like projections along the cutting edges of the beak" explains Gerald Mayr, expert palaeornithologist and author of the report. Like all living birds Dasornis had a beak made of keratin, the same substance as our hair and fingernails, but it also had these bony 'pseudo-teeth' "No living birds have true teeth - which are made of enamel and dentine - because their distant ancestors did away with them more than 100 million years ago, probably to save weight and make flying easier. But the bony-toothed birds, like Dasornis, are unique among birds in that they reinvented tooth-like structures by evolving these bony spikes." So why did Dasornis have these pseudo-teeth? "Its linked to diet" says Mayr, "these birds probably skimmed across the surface of the sea, snapping up fish and squid on the wing. With only an ordinary beak these would have been difficult to keep hold of, and the pseudo-teeth evolved to prevent meals slipping away."

Notes to Editors:

1. The paper, "A skull of the giant bony-toothed bird Dasornis (Aves: Pelagornithidae) from the Lower Eocene of the Isle of Sheppey" by Gerald Mayr is published in the September 26th issue of Palaeontology. Copies of the paper can be obtained on request from Doris von Eiff (details below).

2. Gerald Mayr is scientist at the Senckenberg Research Institute and Natural History Museum, Frankfurt/Main, Germany.

3. Larger images of the following pictures can be obtained from Doris von Eiff (details below).

4. The fossil belongs to the collection of the Karlsruhe Natural History Museum

5. Palaeontology is published by the Palaeontological Association, a registered charity that promotes the scientific study of fossils. It is one of the world's leading learned societies in this field. For further information about the Association and its activities, or forthcoming papers of interest in Palaeontology, contact the Publicity Officer, Mark Purnell, publicity@palass.org

Issued by: Forschungsinstitut und Naturmuseum Senckenberg, Senckenberganlage 25, 60325 Frankfurt am Main, Germany

Contact: Gerald Mayr
gerald.mayr@senckenberg.de
+49 69 7542 1348
Press Contact: Doris von Eiff, Press Officer
doris.voneiff@senckenberg.de
+49 69 7542 1257
+49173 54 50 196
Weitere Informationen:
http://www.senckenberg.de/root/index.php?page_id=662
http://www.senckenberg.de/root/index.php?page_id=982
http://www.palass.org
http://www.sheppeyfossils.com

Doris von Eiff | idw
Further information:
http://www.senckenberg.de

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>