Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More insights from tissue samples

08.04.2014

Team of researchers demonstrates advantages of the HOPE fixation strategy

A new way of preparing patient tissue for analyses might soon become the new standard. This is what researchers of the Helmholtz Centre for Infection Research (HZI) and the Research Center Borstel recommend in their current publication in the Journal of Proteome Research.


Human lung tissue which is infected by legionella as it can be seen by doctors when patients suffer from legionnaire's disease. he tissue was fixed with HOPE.

TU Braunschweig / Zelluläre Infektionsbiologie

They discovered that the so-called HOPE method allows tissue samples to be treated such that they do not only meet the requirements of clinical histology, but can still be characterised later on by modern methods of proteomics, a technique analysing all proteins at once.

This is successful, since the structure of the tissue is "fixed" in a way that the protein molecules remain accessible for systematic analysis. This technique therefore meets current requirements in terms of a more personalised medicine and thus opens up new opportunities for researching diseases and their therapies.

HOPE stands for "Hepes-glutamic acid buffer mediated Organic solvent Protection Effect" and is a method for preserving tissue samples for later analysis. 

A look at a tissue sample through the microscope tells researchers and pathologists a whole story about a patient's health status. In order to preserve the tissue, samples are taken and usually fixed with formalin, before they are embedded in wax-like paraffin and cut into razor-thin slices. These are then stained and allow the experienced eye to discern tissue structures and make diagnoses and prognoses.

One disadvantage of this type of sample preparation is that formalin cross-links the protein molecules that are present in the cell. This makes them difficult to analyse. In order to carry out analyses of this type anyhow, researchers need to use snap-frozen samples - which do not lend themselves to histological inspection under the microscope. "This means that we were not able to correlate the exact condition of the analysed tissue to the results of proteomics," says HZI researcher Prof Lothar Jänsch. "This is, however, an important pre-requisite in order to detect proteins as biomarkers, i.e. as indicators of certain diseases, or new drug targets."

Together with researchers of the Research Center Borstel, the Lung Clinic Grosshansdorf, the Technische Universität Braunschweig, and the Ostfalia University of Applied Science, Jänsch showed that the treatment of tissue with the HOPE technique combines all advantages of standard fixation strategies. In this method, the samples are first treated with an organic, formalin-free buffer and acetone, and then embedded in paraffin.

The team of researchers compared snap-frozen und HOPE-treated lung tissue from patients. In contrast to snap-frozen samples, HOPE fixation preserves the structure of tissues well and for example lung vesicles can be seen more clearly. The researchers then used mass spectrometry in order to characterise the proteins that are present in the tissue. The proteome derived from this study tells much about the health status of the tissue. The scientists went one step further and also investigated the so-called phospho-proteome, i.e. all protein molecules in the cell that are currently "switched on or off". To know which proteins are active contributes to the diagnosis of diseases and can help identify targets for new medications. The results are very promising: HOPE fixation does not only preserve the structure of the tissue but is just as well-suited for proteomics and phospho-proteomics as snap-freezing the tissue.

"Based on our results, we recommend HOPE as the fixation strategy for clinics and biobanks that are actively involved in improving diagnosis and therapies," says Jänsch.

The team of researchers applies this insight already in the research on legionnaire's disease, an infectious disease that is caused by bacteria and is associated with pneumonia. They maintain a close cooperation with Dr Torsten Goldmann, Research Centere Borstel, on this topic. "We already established an infection model for the human lung. We now know that HOPE makes this model also amenable to proteome and phospho-proteome analyses," says Prof Michael Steinert, who coordinates a project on this topic supported by the German Federal Ministry of Education and Research. "In the proteome analyses, we can already see some clear variations in the tissues of different donors and are starting to understand the individual infection process of legionnaire's disease better." HOPE thus lives up to its name and gives reason for hope in terms of new insights in the research, diagnosis and therapy of diseases.

Original publication:

Olga Shevchuk, Nada Abidi, Frank Klawonn, Josef Wissing, Manfred Nimtz, Christian Kugler, Michael Steinert, Torsten Goldmann, Lothar Jänsch
HOPE-fixation of lung tissue allows retrospective proteome and phosphoproteome studies
Journal of Proteome Research, 2014, DOI: 10.1021/pr500096a

Weitere Informationen:

http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/more_insig... - This press release on helmholtz-hzi.de
http://dx.doi.org/10.1021/pr500096a - Link to the original publication

Dr. Birgit Manno | Helmholtz-Zentrum

Further reports about: HZI Helmholtz-Zentrum analyses diseases fixation lung proteins proteome publication therapies

More articles from Life Sciences:

nachricht Faster detection of pathogens in the lungs
24.06.2016 | Universität Zürich

nachricht How yeast cells regulate their fat balance
23.06.2016 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

Im Focus: Physicists measured something new in the radioactive decay of neutrons

The experiment inspired theorists; future ones could reveal new physics

A physics experiment performed at the National Institute of Standards and Technology (NIST) has enhanced scientists' understanding of how free neutrons decay...

Im Focus: Discovery of gold nanocluster 'double' hints at other shape changing particles

New analysis approach brings two unique atomic structures into focus

Chemically the same, graphite and diamonds are as physically distinct as two minerals can be, one opaque and soft, the other translucent and hard. What makes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Nanoscientists develop the 'ultimate discovery tool'

24.06.2016 | Materials Sciences

Russian physicists create a high-precision 'quantum ruler'

24.06.2016 | Physics and Astronomy

Hubble confirms new dark spot on Neptune

24.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>