Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More insights from tissue samples

08.04.2014

Team of researchers demonstrates advantages of the HOPE fixation strategy

A new way of preparing patient tissue for analyses might soon become the new standard. This is what researchers of the Helmholtz Centre for Infection Research (HZI) and the Research Center Borstel recommend in their current publication in the Journal of Proteome Research.


Human lung tissue which is infected by legionella as it can be seen by doctors when patients suffer from legionnaire's disease. he tissue was fixed with HOPE.

TU Braunschweig / Zelluläre Infektionsbiologie

They discovered that the so-called HOPE method allows tissue samples to be treated such that they do not only meet the requirements of clinical histology, but can still be characterised later on by modern methods of proteomics, a technique analysing all proteins at once.

This is successful, since the structure of the tissue is "fixed" in a way that the protein molecules remain accessible for systematic analysis. This technique therefore meets current requirements in terms of a more personalised medicine and thus opens up new opportunities for researching diseases and their therapies.

HOPE stands for "Hepes-glutamic acid buffer mediated Organic solvent Protection Effect" and is a method for preserving tissue samples for later analysis. 

A look at a tissue sample through the microscope tells researchers and pathologists a whole story about a patient's health status. In order to preserve the tissue, samples are taken and usually fixed with formalin, before they are embedded in wax-like paraffin and cut into razor-thin slices. These are then stained and allow the experienced eye to discern tissue structures and make diagnoses and prognoses.

One disadvantage of this type of sample preparation is that formalin cross-links the protein molecules that are present in the cell. This makes them difficult to analyse. In order to carry out analyses of this type anyhow, researchers need to use snap-frozen samples - which do not lend themselves to histological inspection under the microscope. "This means that we were not able to correlate the exact condition of the analysed tissue to the results of proteomics," says HZI researcher Prof Lothar Jänsch. "This is, however, an important pre-requisite in order to detect proteins as biomarkers, i.e. as indicators of certain diseases, or new drug targets."

Together with researchers of the Research Center Borstel, the Lung Clinic Grosshansdorf, the Technische Universität Braunschweig, and the Ostfalia University of Applied Science, Jänsch showed that the treatment of tissue with the HOPE technique combines all advantages of standard fixation strategies. In this method, the samples are first treated with an organic, formalin-free buffer and acetone, and then embedded in paraffin.

The team of researchers compared snap-frozen und HOPE-treated lung tissue from patients. In contrast to snap-frozen samples, HOPE fixation preserves the structure of tissues well and for example lung vesicles can be seen more clearly. The researchers then used mass spectrometry in order to characterise the proteins that are present in the tissue. The proteome derived from this study tells much about the health status of the tissue. The scientists went one step further and also investigated the so-called phospho-proteome, i.e. all protein molecules in the cell that are currently "switched on or off". To know which proteins are active contributes to the diagnosis of diseases and can help identify targets for new medications. The results are very promising: HOPE fixation does not only preserve the structure of the tissue but is just as well-suited for proteomics and phospho-proteomics as snap-freezing the tissue.

"Based on our results, we recommend HOPE as the fixation strategy for clinics and biobanks that are actively involved in improving diagnosis and therapies," says Jänsch.

The team of researchers applies this insight already in the research on legionnaire's disease, an infectious disease that is caused by bacteria and is associated with pneumonia. They maintain a close cooperation with Dr Torsten Goldmann, Research Centere Borstel, on this topic. "We already established an infection model for the human lung. We now know that HOPE makes this model also amenable to proteome and phospho-proteome analyses," says Prof Michael Steinert, who coordinates a project on this topic supported by the German Federal Ministry of Education and Research. "In the proteome analyses, we can already see some clear variations in the tissues of different donors and are starting to understand the individual infection process of legionnaire's disease better." HOPE thus lives up to its name and gives reason for hope in terms of new insights in the research, diagnosis and therapy of diseases.

Original publication:

Olga Shevchuk, Nada Abidi, Frank Klawonn, Josef Wissing, Manfred Nimtz, Christian Kugler, Michael Steinert, Torsten Goldmann, Lothar Jänsch
HOPE-fixation of lung tissue allows retrospective proteome and phosphoproteome studies
Journal of Proteome Research, 2014, DOI: 10.1021/pr500096a

Weitere Informationen:

http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/more_insig... - This press release on helmholtz-hzi.de
http://dx.doi.org/10.1021/pr500096a - Link to the original publication

Dr. Birgit Manno | Helmholtz-Zentrum

Further reports about: HZI Helmholtz-Zentrum analyses diseases fixation lung proteins proteome publication therapies

More articles from Life Sciences:

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

nachricht A New Discovery in the Fight against Cancer: Tumor Cells Switch to a Different Mode
29.04.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>