Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More insights from tissue samples

08.04.2014

Team of researchers demonstrates advantages of the HOPE fixation strategy

A new way of preparing patient tissue for analyses might soon become the new standard. This is what researchers of the Helmholtz Centre for Infection Research (HZI) and the Research Center Borstel recommend in their current publication in the Journal of Proteome Research.


Human lung tissue which is infected by legionella as it can be seen by doctors when patients suffer from legionnaire's disease. he tissue was fixed with HOPE.

TU Braunschweig / Zelluläre Infektionsbiologie

They discovered that the so-called HOPE method allows tissue samples to be treated such that they do not only meet the requirements of clinical histology, but can still be characterised later on by modern methods of proteomics, a technique analysing all proteins at once.

This is successful, since the structure of the tissue is "fixed" in a way that the protein molecules remain accessible for systematic analysis. This technique therefore meets current requirements in terms of a more personalised medicine and thus opens up new opportunities for researching diseases and their therapies.

HOPE stands for "Hepes-glutamic acid buffer mediated Organic solvent Protection Effect" and is a method for preserving tissue samples for later analysis. 

A look at a tissue sample through the microscope tells researchers and pathologists a whole story about a patient's health status. In order to preserve the tissue, samples are taken and usually fixed with formalin, before they are embedded in wax-like paraffin and cut into razor-thin slices. These are then stained and allow the experienced eye to discern tissue structures and make diagnoses and prognoses.

One disadvantage of this type of sample preparation is that formalin cross-links the protein molecules that are present in the cell. This makes them difficult to analyse. In order to carry out analyses of this type anyhow, researchers need to use snap-frozen samples - which do not lend themselves to histological inspection under the microscope. "This means that we were not able to correlate the exact condition of the analysed tissue to the results of proteomics," says HZI researcher Prof Lothar Jänsch. "This is, however, an important pre-requisite in order to detect proteins as biomarkers, i.e. as indicators of certain diseases, or new drug targets."

Together with researchers of the Research Center Borstel, the Lung Clinic Grosshansdorf, the Technische Universität Braunschweig, and the Ostfalia University of Applied Science, Jänsch showed that the treatment of tissue with the HOPE technique combines all advantages of standard fixation strategies. In this method, the samples are first treated with an organic, formalin-free buffer and acetone, and then embedded in paraffin.

The team of researchers compared snap-frozen und HOPE-treated lung tissue from patients. In contrast to snap-frozen samples, HOPE fixation preserves the structure of tissues well and for example lung vesicles can be seen more clearly. The researchers then used mass spectrometry in order to characterise the proteins that are present in the tissue. The proteome derived from this study tells much about the health status of the tissue. The scientists went one step further and also investigated the so-called phospho-proteome, i.e. all protein molecules in the cell that are currently "switched on or off". To know which proteins are active contributes to the diagnosis of diseases and can help identify targets for new medications. The results are very promising: HOPE fixation does not only preserve the structure of the tissue but is just as well-suited for proteomics and phospho-proteomics as snap-freezing the tissue.

"Based on our results, we recommend HOPE as the fixation strategy for clinics and biobanks that are actively involved in improving diagnosis and therapies," says Jänsch.

The team of researchers applies this insight already in the research on legionnaire's disease, an infectious disease that is caused by bacteria and is associated with pneumonia. They maintain a close cooperation with Dr Torsten Goldmann, Research Centere Borstel, on this topic. "We already established an infection model for the human lung. We now know that HOPE makes this model also amenable to proteome and phospho-proteome analyses," says Prof Michael Steinert, who coordinates a project on this topic supported by the German Federal Ministry of Education and Research. "In the proteome analyses, we can already see some clear variations in the tissues of different donors and are starting to understand the individual infection process of legionnaire's disease better." HOPE thus lives up to its name and gives reason for hope in terms of new insights in the research, diagnosis and therapy of diseases.

Original publication:

Olga Shevchuk, Nada Abidi, Frank Klawonn, Josef Wissing, Manfred Nimtz, Christian Kugler, Michael Steinert, Torsten Goldmann, Lothar Jänsch
HOPE-fixation of lung tissue allows retrospective proteome and phosphoproteome studies
Journal of Proteome Research, 2014, DOI: 10.1021/pr500096a

Weitere Informationen:

http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/more_insig... - This press release on helmholtz-hzi.de
http://dx.doi.org/10.1021/pr500096a - Link to the original publication

Dr. Birgit Manno | Helmholtz-Zentrum

Further reports about: HZI Helmholtz-Zentrum analyses diseases fixation lung proteins proteome publication therapies

More articles from Life Sciences:

nachricht New Antibody Portal Bolsters Biomedical Research Reliability
27.07.2015 | University of North Carolina School of Medicine

nachricht Insights into catalytic converters
27.07.2015 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Young Scientist Discovers Magnetic Material Unnecessary to Create Spin Current

27.07.2015 | Materials Sciences

Superfast fluorescence sets new speed record

27.07.2015 | Information Technology

Ultra-Thin Hollow Nanocages Could Reduce Platinum Use in Fuel Cell Electrodes

27.07.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>