Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkeys get a groove on, but only to monkey music

02.09.2009
Music is one of the surest ways to influence human emotions; most people unconsciously recognize and respond to music that is happy, sad, fearful or mellow. But psychologists who have tried to trace the evolutionary roots of these responses usually hit a dead end. Nonhuman primates scarcely respond to human music, and instead prefer silence.

A new report by Charles Snowdon, a professor of psychology at the University of Wisconsin-Madison, and musician David Teie of the University of Maryland shows that a monkey called the cotton-top tamarin indeed responds to music.

The catch? These South American monkeys are essentially immune to human music, but they respond appropriately to "monkey music," 30-second clips composed by Teie on the basis of actual monkey calls.

The music was inspired by sounds the tamarins make to convey two opposite emotions: threats and/or fear, and affiliation, a friendly, safe and happy condition.

The study, published this week (Sept. 1) in the journal Biology Letters, reported that the monkeys could tell the difference: For five minutes after hearing fear music, the monkeys displayed more symptoms of anxiety and increased their movement. In contrast, monkeys that heard "affiliative" music reduced their movements and increased their feeding behavior -- both signs of a calming effect.

Snowdon, a longtime researcher into primate behavior, says the project began with an inquiry from Teie, who plays cello in the National Symphony Orchestra: Had Snowdon ever tested the effects of music on monkeys? When Teie listened to recordings made in Snowdon's monkey colony at the psychology department at UW-Madison, he readily discerned the animal's affective state, Snowdon says. "He said, 'This is a call from an animal that is very upset; this is from an animal that is more relaxed.' He was able to read the emotional state just by the musical analysis."

Teie composed the music using specific features he noticed in the monkeys' calls, such as rising or falling pitches, and the duration of various sounds, says Snowdon, who notes that monkeys are not the only ones who use musical elements to convey emotional content in speech. Studies show that babies that are too young to understand words can still interpret a long tone and a descending pitch as soothing, and a short tone as inhibiting.

"We use legato (long tones) with babies to calm them," Snowdon says. "We use staccato to order them to stop. Approval has a rising tone, and soothing has a decreasing tone. We add musical features to speech so it will influence the affective state of a baby. If you bark out, 'PLAY WITH IT,' a baby will freeze. The voice, the intonation pattern, the musicality can matter more than the words."

Snowdon, who has sung in choirs for most of his life, adds, "My talking does not necessarily tell you about my emotional state. When I add extra elements, change the tone of voice, the rhythm, pitch or speed, that is where the emotional content is contained."

Monkeys interpret rising and falling tones differently than humans. Oddly, their only response to several samples of human music was a calming response to the heavy-metal band Metallica.

The study opens a new window into animal communication, Snowdon says. "People have looked at animal communication in terms of conveying information – 'I am hungry,' or 'I am afraid.' But it's much more than that. These musical elements are inducing a relatively long-term change in behavior of listeners. The affiliative music is making them calmer; they move less, eat and drink at a higher rate, and show less anxiety behavior."

This change in behavior suggests that for cotton-top tamarins, communication is about much more than just information. "I am not calling just to let you know how I am feeling, but my call can also stimulate a similar state in you," Snowdon says. "That would be valuable if a group was threatened; in that situation, you don't want everybody being calm, you want them alert. We do the same thing when we try to calm a baby. I am not just communicating about how I am feeling. I am using the way I communicate to induce a similar state in the baby."

The similarities in communications between monkeys and people suggest deep evolutionary roots for the musical elements of speech, Snowdon says. "The emotional components of music and animal calls might be very similar, and from an evolutionary perspective, we are finding that the note patterns, dissonance and timing are important for communicating affective states in both animals and people."

Charles Snowdon | EurekAlert!
Further information:
http://www.wisc.edu
http://www.news.wisc.edu/newsphotos/musical_monkey09.html

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>