Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monell scientists identify elusive taste stem cells

04.02.2013
Identification of progenitors may someday help treat clinical taste dysfunction

Scientists at the Monell Center have identified the location and certain genetic characteristics of taste stem cells on the tongue. The findings will facilitate techniques to grow and manipulate new functional taste cells for both clinical and research purposes.

"Cancer patients who have taste loss following radiation to the head and neck and elderly individuals with diminished taste function are just two populations who could benefit from the ability to activate adult taste stem cells," said Robert Margolskee, M.D., Ph.D., a molecular neurobiologist at Monell who is one of the study's authors.

Taste cells are located in clusters called taste buds, which in turn are found in papillae, the raised bumps visible on the tongue's surface.

Two types of taste cells contain chemical receptors that initiate perception of sweet, bitter, umami, salty, and sour taste qualities. A third type appears to serve as a supporting cell.

A remarkable characteristic of these sensory cells is that they regularly regenerate. All three taste cell types undergo frequent turnover, with an average lifespan of 10-16 days. As such, new taste cells must constantly be regenerated to replace cells that have died.

For decades, taste scientists have attempted to identify the stem or progenitor cells that spawn the different taste receptor cells. The elusive challenge also sought to establish whether one or several progenitors are involved and where they are located, whether in or near the taste bud.

Drawing on the strong physiological relationship between oral taste cells and endocrine (hormone producing) cells in the intestine, the Monell team used a marker for intestinal stem cells to probe for stem cells in taste tissue on the tongue.

Stains for the stem cell marker, known as Lgr5 (leucine-rich repeat-containing G-protein-coupled receptor 5), showed two patterns of expression in taste tissue. The first was a strong signal underlying taste papillae at the back of the tongue and the second was a weaker signal immediately underneath taste buds in those papillae.

The Monell scientists hypothesize that the two levels of expression could indicate two different populations of cells. The cells that more strongly express Lgr5 could be true taste stem cells, whereas those with weaker expression could represent those stem cells that have begun the transformation into functional taste cells.

Additional studies revealed that the Lgr5-expressing cells were capable of becoming any one of the three major taste cell types.

The findings are published online in the journal Stem Cells.

"This is just the tip of the iceberg," said senior author Peihua Jiang, Ph.D., also a Monell molecular neurobiologist. "Identification of these cells opens up a whole new area for studying taste cell renewal, and contributes to stem cell biology in general."

Future studies will focus on identifying the factors that program the Lgr5-expressing cells to differentiate into the different taste cell types, and explore how to grow these cells in culture, thus providing a renewable source of taste receptor cells for research and perhaps even clinical use.

Other authors from Monell that contributed to the work are Karen Yee, Yan Li and Kevin Redding.

Research reported in this publication was supported by the National Institute on Deafness and Other Communication Disorders under award numbers DC0101842, DC003055, and 1P30DC011735, and National Institute of Diabetes and Digestive and Kidney Diseases grant DK081421. Both institutes are part of the National Institutes of Health. Additional funding was provided by the Commonwealth of Pennsylvania Department of Health.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. For 45 years, Monell has advanced scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication. For more information about Monell, visit www.monell.org.

Leslie Stein | EurekAlert!
Further information:
http://www.monell.org

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>