Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monell scientists identify elusive taste stem cells

04.02.2013
Identification of progenitors may someday help treat clinical taste dysfunction

Scientists at the Monell Center have identified the location and certain genetic characteristics of taste stem cells on the tongue. The findings will facilitate techniques to grow and manipulate new functional taste cells for both clinical and research purposes.

"Cancer patients who have taste loss following radiation to the head and neck and elderly individuals with diminished taste function are just two populations who could benefit from the ability to activate adult taste stem cells," said Robert Margolskee, M.D., Ph.D., a molecular neurobiologist at Monell who is one of the study's authors.

Taste cells are located in clusters called taste buds, which in turn are found in papillae, the raised bumps visible on the tongue's surface.

Two types of taste cells contain chemical receptors that initiate perception of sweet, bitter, umami, salty, and sour taste qualities. A third type appears to serve as a supporting cell.

A remarkable characteristic of these sensory cells is that they regularly regenerate. All three taste cell types undergo frequent turnover, with an average lifespan of 10-16 days. As such, new taste cells must constantly be regenerated to replace cells that have died.

For decades, taste scientists have attempted to identify the stem or progenitor cells that spawn the different taste receptor cells. The elusive challenge also sought to establish whether one or several progenitors are involved and where they are located, whether in or near the taste bud.

Drawing on the strong physiological relationship between oral taste cells and endocrine (hormone producing) cells in the intestine, the Monell team used a marker for intestinal stem cells to probe for stem cells in taste tissue on the tongue.

Stains for the stem cell marker, known as Lgr5 (leucine-rich repeat-containing G-protein-coupled receptor 5), showed two patterns of expression in taste tissue. The first was a strong signal underlying taste papillae at the back of the tongue and the second was a weaker signal immediately underneath taste buds in those papillae.

The Monell scientists hypothesize that the two levels of expression could indicate two different populations of cells. The cells that more strongly express Lgr5 could be true taste stem cells, whereas those with weaker expression could represent those stem cells that have begun the transformation into functional taste cells.

Additional studies revealed that the Lgr5-expressing cells were capable of becoming any one of the three major taste cell types.

The findings are published online in the journal Stem Cells.

"This is just the tip of the iceberg," said senior author Peihua Jiang, Ph.D., also a Monell molecular neurobiologist. "Identification of these cells opens up a whole new area for studying taste cell renewal, and contributes to stem cell biology in general."

Future studies will focus on identifying the factors that program the Lgr5-expressing cells to differentiate into the different taste cell types, and explore how to grow these cells in culture, thus providing a renewable source of taste receptor cells for research and perhaps even clinical use.

Other authors from Monell that contributed to the work are Karen Yee, Yan Li and Kevin Redding.

Research reported in this publication was supported by the National Institute on Deafness and Other Communication Disorders under award numbers DC0101842, DC003055, and 1P30DC011735, and National Institute of Diabetes and Digestive and Kidney Diseases grant DK081421. Both institutes are part of the National Institutes of Health. Additional funding was provided by the Commonwealth of Pennsylvania Department of Health.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. For 45 years, Monell has advanced scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication. For more information about Monell, visit www.monell.org.

Leslie Stein | EurekAlert!
Further information:
http://www.monell.org

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>