Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Monell-led research identifies scent of melanoma

New research may lead to early non-invasive detection and diagnosis

According to new research from the Monell Center and collaborating institutions, odors from human skin cells can be used to identify melanoma, the deadliest form of skin cancer.

In addition to detecting a unique odor signature associated with melanoma cells, the researchers also demonstrated that a nanotechnology-based sensor could reliably differentiate melanoma cells from normal skin cells. The findings suggest that non-invasive odor analysis may be a valuable technique in the detection and early diagnosis of human melanoma.

Melanoma is a tumor affecting melanocytes, skin cells that produce the dark pigment that gives skin its color. The disease is responsible for approximately 75 percent of skin cancer deaths, with chances of survival directly related to how early the cancer is detected. Current detection methods most commonly rely on visual inspection of the skin, which is highly dependent on individual self-examination and clinical skill.

The current study took advantage of the fact that human skin produces numerous airborne chemical molecules known as volatile organic compounds, or VOCs, many of which are odorous. "There is a potential wealth of information waiting to be extracted from examination of VOCs associated with various diseases, including cancers, genetic disorders, and viral or bacterial infections," notes George Preti, PhD, an organic chemist at Monell who is one of the paper's senior authors.

In the study, published online ahead of print in the Journal of Chromatography B, researchers used sophisticated sampling and analytical techniques to identify VOCs from melanoma cells at three stages of the disease as well as from normal melanocytes. All the cells were grown in culture.

The researchers used an absorbent device to collect chemical compounds from air in closed containers containing the various types of cells. Then, gas chromatography-mass spectrometry techniques were used to analyze the compounds and identified different profiles of VOCs emitting from melanoma cells relative to normal cells.

Both the types and concentrations of chemicals were affected. Melanoma cells produced certain compounds not detected in VOCs from normal melanocytes and also more or less of other chemicals. Further, the different types of melanoma cells could be distinguished from one another.

Noting that translation of these results into the clinical diagnostic realm would require a reliable and portable sensor device, the researchers went on to examine VOCs from normal melanocytes and melanoma cells using a previously described nano-sensor.

Constructed of nano-sized carbon tubes coated with strands of DNA, the tiny sensors can be bioengineered to recognize a wide variety of targets, including specific odor molecules. The nano-sensor was able to distinguish differences in VOCs from normal and several different types of melanoma cells.

"We are excited to see that the DNA-carbon nanotube vapor sensor concept has potential for use as a diagnostic. Our plan is to move forward with research into skin cancer and other diseases," said A.T. Charlie Johnson, PhD, Professor of Physics at the University of Pennsylvania, who led the development of the olfactory sensor.

Together, the findings provide proof-of-concept regarding the potential of the two analytical techniques to identify and detect biomarkers that distinguish normal melanocytes from different melanoma cell types.

"This study demonstrates the usefulness of examining VOCs from diseases for rapid and noninvasive diagnostic purposes," said Preti. "The methodology should also allow us to differentiate stages of the disease process."

Current studies are focusing on analysis of VOCs from tumor sites of patients diagnosed with primary melanoma.

Also contributing to the research were lead author Jae Kwak, Michelle Gallagher, Mehmet Hakan Ozdener, Charles J. Wysocki, Adam Faranda, and Amaka Isamah, all from Monell; A. T. Charlie Johnson, Brett R. Goldsmith, and Steven S. Fakharzadeh from the University of Pennsylvania; and Meenhard Herlyn from The Wistar Institute. Research reported in the publication was supported by The National Institute on Deafness and Other Communication Disorders of the National Institutes of Health under Award Number T 32 DC00014-26 to Monell.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additional funds were donated to the Monell Center by Ms. Bonnie Hunt in memory of her parents, Ida and Percy Hunt. Support for Drs Johnson and Goldsmith came from the University of Pennsylvania Nano/Bio Interface Center through National Science Foundation grant NSEC DMR08-32802.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. For 45 years, Monell has advanced scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication. For more information about Monell, visit

Leslie Stein | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>