Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monash team learns from nature to split water

19.08.2008
An international team of researchers led by Monash University has used chemicals found in plants to replicate a key process in photosynthesis paving the way to a new approach that uses sunlight to split water into hydrogen and oxygen.

The breakthrough could revolutionise the renewable energy industry by making hydrogen – touted as the clean, green fuel of the future – cheaper and easier to produce on a commercial scale.

Professor Leone Spiccia, Mr Robin Brimblecombe and Dr Annette Koo from Monash University teamed with Dr Gerhard Swiegers at the CSIRO and Professor Charles Dismukes at Princeton University to develop a system comprising a coating that can be impregnated with a form of manganese, a chemical essential to sustaining photosynthesis in plant life.

"We have copied nature, taking the elements and mechanisms found in plant life that have evolved over 3 billion years and recreated one of those processes in the laboratory," Professor Spiccia said.

"A manganese cluster is central to a plant's ability to use water, carbon dioxide and sunlight to make carbohydrates and oxygen. Man-made mimics of this cluster were developed by Professor Charles Dismukes some time ago, and we've taken it a step further, harnessing the ability of these molecules to convert water into its component elements, oxygen and hydrogen," Professor Spiccia said.

"The breakthrough came when we coated a proton conductor, called Nafion, onto an anode to form a polymer membrane just a few micrometres thick, which acts as a host for the manganese clusters."

"Normally insoluble in water, when we bound the catalyst within the pores of the Nafion membrane, it was stabilised against decomposition and, importantly, water could reach the catalyst where it was oxidised on exposure to light."

This process of "oxidizing" water generates protons and electrons, which can be converted into hydrogen gas instead of carbohydrates as in plants.

"Whilst man has been able to split water into hydrogen and oxygen for years, we have been able to do the same thing for the first time using just sunlight, an electrical potential of 1.2 volts and the very chemical that nature has selected for this purpose," Professor Spiccia said

Testing revealed the catalyst assembly was still active after three days of continuous use, producing oxygen and hydrogen gas in the presence of water, an electrical potential and visible light.

Professor Spiccia said the efficiency of the system needed to be improved, but this breakthrough had huge potential. "We need to continue to learn from nature so that we can better master this process."

"Hydrogen has long been considered the ideal clean green fuel, energy-rich and carbon-neutral. The production of hydrogen using nothing but water and sunlight offers the possibility of an abundant, renewable, green source of energy for the future for communities across the world."

Samantha Blair | EurekAlert!
Further information:
http://www.monash.edu.au

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>