Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monash team learns from nature to split water

19.08.2008
An international team of researchers led by Monash University has used chemicals found in plants to replicate a key process in photosynthesis paving the way to a new approach that uses sunlight to split water into hydrogen and oxygen.

The breakthrough could revolutionise the renewable energy industry by making hydrogen – touted as the clean, green fuel of the future – cheaper and easier to produce on a commercial scale.

Professor Leone Spiccia, Mr Robin Brimblecombe and Dr Annette Koo from Monash University teamed with Dr Gerhard Swiegers at the CSIRO and Professor Charles Dismukes at Princeton University to develop a system comprising a coating that can be impregnated with a form of manganese, a chemical essential to sustaining photosynthesis in plant life.

"We have copied nature, taking the elements and mechanisms found in plant life that have evolved over 3 billion years and recreated one of those processes in the laboratory," Professor Spiccia said.

"A manganese cluster is central to a plant's ability to use water, carbon dioxide and sunlight to make carbohydrates and oxygen. Man-made mimics of this cluster were developed by Professor Charles Dismukes some time ago, and we've taken it a step further, harnessing the ability of these molecules to convert water into its component elements, oxygen and hydrogen," Professor Spiccia said.

"The breakthrough came when we coated a proton conductor, called Nafion, onto an anode to form a polymer membrane just a few micrometres thick, which acts as a host for the manganese clusters."

"Normally insoluble in water, when we bound the catalyst within the pores of the Nafion membrane, it was stabilised against decomposition and, importantly, water could reach the catalyst where it was oxidised on exposure to light."

This process of "oxidizing" water generates protons and electrons, which can be converted into hydrogen gas instead of carbohydrates as in plants.

"Whilst man has been able to split water into hydrogen and oxygen for years, we have been able to do the same thing for the first time using just sunlight, an electrical potential of 1.2 volts and the very chemical that nature has selected for this purpose," Professor Spiccia said

Testing revealed the catalyst assembly was still active after three days of continuous use, producing oxygen and hydrogen gas in the presence of water, an electrical potential and visible light.

Professor Spiccia said the efficiency of the system needed to be improved, but this breakthrough had huge potential. "We need to continue to learn from nature so that we can better master this process."

"Hydrogen has long been considered the ideal clean green fuel, energy-rich and carbon-neutral. The production of hydrogen using nothing but water and sunlight offers the possibility of an abundant, renewable, green source of energy for the future for communities across the world."

Samantha Blair | EurekAlert!
Further information:
http://www.monash.edu.au

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>