Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monarch butterflies migration path tracked by generations for first time

07.08.2013
Everyone knows all about the epic breeding journey taken each year by generations of monarch butterflies between Mexico and Canada, right? Not so fast, say researchers including University of Guelph biologists.

Until now, linking adult butterflies and their birthplaces during a complicated annual migration spanning all of eastern North America and involving up to five generations of the iconic insects had eluded scientists.


A new study from the University of Guelph tracks monarch butterflies migration pattern, and follows them by generation. This study provides some clues as to why the butterflies population has been dropping recently.

Credit: University of Guelph - Jessica Linton

Now for the first time, researchers have mapped that migration pattern across the continent over an entire breeding season. That information might help conserve a creature increasingly threatened by loss of habitat and food sources, says Tyler Flockhart, a PhD student in U of G's Department of Integrative Biology.

"This tells us where individuals go and where they're coming from," he said.

Flockhart is lead author of a paper published [online Aug. 7: embargo] in the Proceedings of the Royal Society B with Prof. Ryan Norris and co-authors based in Saskatchewan, Colorado and Australia.

Their new study traced successive generations of adult monarchs to their birthplaces between the southern United States and Ontario over a single breeding season.

Before this, scientists had only a rough idea of those annual colonization patterns, said Prof. Ryan Norris, Integrative Biology. "You could have a monarch showing up in Ontario, but we didn't know exactly where it came from."

Tracking migration patterns is vital to understanding why monarch numbers are declining and predicting the effects on the insects of milkweed plant loss, habitat destruction and other factors, he said.

In 2012, the smallest-ever population of monarchs was recorded in their Mexican overwintering grounds. "They've been declining steadily," said Flockhart.

Monarchs normally show up in southern Ontario by June or July. This summer, few had been sighted here by the end of July.

The researchers used chemical markers in butterfly wings to match "waves" of insect generations with their birthplaces. Monarch larvae eat only milkweed. The plant's chemical signature varies from place to place, allowing scientists to pinpoint a butterfly's birthplace by analyzing those chemical elements in its wings.

Flockhart spent summer 2011 following the northward migration and netting more than 800 monarchs for analysis. Beginning a road trip in southern Texas, he logged 35,000 kilometres across 17 states and two provinces. "As far as I know, it's the broadest sample of monarch butterflies through an entire breeding season across North America."

Monarch colonies overwinter in Mexico. During the breeding season beginning in April, successive generations were born in Texas and Oklahoma, then in the U.S. Midwest, and then over a broad area spanning the northeast coast and the Midwest.

One key stop is the "corn belt" in the U.S Midwest. There a breeding "explosion" sends vast numbers of adults in several directions, including to Canada, said Norris.

He said loss of milkweed plants and planting of genetically modified corn and soy in the Midwest have affected monarch survival. "If habitats in the Midwest continue to decline, then monarchs will lose the ability to expand the breeding range, including those butterflies that end up here in Ontario."

It's also important to protect breeding habitat in other locations, he said, including parts of southern Texas that supply future generations to breed in the Midwest.

"To lose monarchs would be a huge blow to the environment and to the public. People can easily identify monarchs. It might be the first butterfly they see or catch as a child, and it's often the first story they hear about how animals migrate."

Adds Flockhart: "Every school kid knows about monarchs."

Ryan Norris | EurekAlert!
Further information:
http://www.uoguelph.ca

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>