Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mona Lisa’s Secret

11.08.2010
X-ray fluorescence spectroscopy unveils Da Vinci’s astounding sfumato technique

Mona Lisa’s mystical smile still puts viewers under a spell. Leonardo Da Vinci attained the perfection and finesse of his paintings with a technique he himself perfected. This technique is called sfumato (from the Italian for “foggy”).

In this method, several layers of color are applied over each other. The colors meld together and lend the face a mysterious glow. Philippe Walter and his team at the Louvre in Paris have now examined the faces of seven paintings signed by the master with a new non-invasive X-ray fluorescence spectroscopy technique. As the scientists report in the journal Angewandte Chemie, Mona Lisa’s secret lies in many whisper-thin layers of a transparent glaze.

Da Vinci’s technique is fascinating. The gradation of color from light to dark is barely perceptible and looks natural. “Neither brushstroke nor contour is visible: lights and shades are blended in the manner of smoke,” says Walter. The details of how the sfumato technique worked have not been determined before. Walter and his colleagues have now used a non-destructive technique, X-ray fluorescence spectroscopy, to track down the secret. The paintings were irradiated with X-rays. Every chemical element then gives off a characteristic fluorescent light, which allows the element to be quantified.

“Until now, the analysis had remained qualitative, because all the pigment layers were considered simultaneously,” reports Walter. “New technical advances and software have now allowed us to resolve cross-sections of the layers and to quantitatively analyze the composition and thickness of the individual pigment layers.” The seven paintings examined—including the Mona Lisa—span over 40 years of Da Vinci’s work.

In the Mona Lisa, the darker areas arose because a manganese-containing layer was applied more thickly than in the lighter areas. The underlying layers containing lead white are equally thick all over. In a painting dating from about ten years earlier, “Belle Ferronnière”, things are different: Here the shade effects are not the result of a glaze shining through; instead, Da Vinci seems to have used a covering layer of color—dark pigments in a classic oil technique,” says Walter. “The master continuously improved his painting technique. In his later paintings he was then able to produce translucent layers made of films of an organic medium ranging from 30 to only a few micrometers in thickness—an amazing achievement even by today's standards.” The long drying time of the individual layers, lasting weeks and months, explains why Da Vinci worked on the Mona Lisa for over four years, leaving the painting unfinished, according to texts from the Renaissance period.

Author: Philippe Walter, Centre de Recherche et de Restauration des Musées de France, Paris (France), mailto:philippe.walter@culture.gouv.fr

Title: Revealing the sfumato Technique of Leonardo da Vinci by X-Ray Fluorescence Spectroscopy

Angewandte Chemie International Edition 2010, 49, No. 35, 6125–6128, Permalink to the article: http://dx.doi.org/10.1002/anie.201001116

Philippe Walter | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>