Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mona Lisa’s Secret

11.08.2010
X-ray fluorescence spectroscopy unveils Da Vinci’s astounding sfumato technique

Mona Lisa’s mystical smile still puts viewers under a spell. Leonardo Da Vinci attained the perfection and finesse of his paintings with a technique he himself perfected. This technique is called sfumato (from the Italian for “foggy”).

In this method, several layers of color are applied over each other. The colors meld together and lend the face a mysterious glow. Philippe Walter and his team at the Louvre in Paris have now examined the faces of seven paintings signed by the master with a new non-invasive X-ray fluorescence spectroscopy technique. As the scientists report in the journal Angewandte Chemie, Mona Lisa’s secret lies in many whisper-thin layers of a transparent glaze.

Da Vinci’s technique is fascinating. The gradation of color from light to dark is barely perceptible and looks natural. “Neither brushstroke nor contour is visible: lights and shades are blended in the manner of smoke,” says Walter. The details of how the sfumato technique worked have not been determined before. Walter and his colleagues have now used a non-destructive technique, X-ray fluorescence spectroscopy, to track down the secret. The paintings were irradiated with X-rays. Every chemical element then gives off a characteristic fluorescent light, which allows the element to be quantified.

“Until now, the analysis had remained qualitative, because all the pigment layers were considered simultaneously,” reports Walter. “New technical advances and software have now allowed us to resolve cross-sections of the layers and to quantitatively analyze the composition and thickness of the individual pigment layers.” The seven paintings examined—including the Mona Lisa—span over 40 years of Da Vinci’s work.

In the Mona Lisa, the darker areas arose because a manganese-containing layer was applied more thickly than in the lighter areas. The underlying layers containing lead white are equally thick all over. In a painting dating from about ten years earlier, “Belle Ferronnière”, things are different: Here the shade effects are not the result of a glaze shining through; instead, Da Vinci seems to have used a covering layer of color—dark pigments in a classic oil technique,” says Walter. “The master continuously improved his painting technique. In his later paintings he was then able to produce translucent layers made of films of an organic medium ranging from 30 to only a few micrometers in thickness—an amazing achievement even by today's standards.” The long drying time of the individual layers, lasting weeks and months, explains why Da Vinci worked on the Mona Lisa for over four years, leaving the painting unfinished, according to texts from the Renaissance period.

Author: Philippe Walter, Centre de Recherche et de Restauration des Musées de France, Paris (France), mailto:philippe.walter@culture.gouv.fr

Title: Revealing the sfumato Technique of Leonardo da Vinci by X-Ray Fluorescence Spectroscopy

Angewandte Chemie International Edition 2010, 49, No. 35, 6125–6128, Permalink to the article: http://dx.doi.org/10.1002/anie.201001116

Philippe Walter | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>