Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molten Proteins

17.08.2009
Surface-modified liquid protein with liquid-crystalline properties

Proteins are solids. When heated they do not melt; instead, they decompose or sublime directly to the gas phase at low pressures. They cannot be converted into a liquid form unless they are dissolved in a solvent.

A team at the University of Bristol (UK) and the Max Planck Institute of Colloids and Interfaces in Golm (Germany) has now successfully liquefied a protein without the assistance of a solvent. As the research team headed by Stephen Mann reports in the journal Angewandte Chemie, the trick is to modify the surface of the protein with a polymeric surfactant.

The researchers used ferritin for their experiments. This large protein serves animals and plants as a storage material for iron. Ferritin forms a hollow sphere that can hold thousands of iron ions. Adam Perriman, a researcher in the Mann lab, attached polymer chains consisting of a polyethylene oxide portion and a hydrocarbon portion to these iron-containing ferritin spheres. About 240 polymer chains were attached to every ferritin molecule. A solution of proteins modified in this way was freeze-dried.

The resulting dry powder could be melted to form a transparent, viscous red liquid that solidified only upon cooling to –50 °C. In the temperature range between 30 and 37 °C the modified protein is in a liquid-crystalline state, which means the molecules are oriented more or less uniformly but (at least partly) lack the three-dimensional lattice that is formed in the crystalline state. At higher temperatures, the modified protein acts like a normal liquid. It only decomposes at temperatures above 400 °C.

How does the liquefaction work? The surfactant chains on the ferritin surface keep the protein spheres apart and shield their surfaces. This prevents the electrostatic attractive forces between polar molecular groups of neighboring spheres from holding the proteins together in a solid. The spheres are instead held together by attractive forces between the hydrocarbon ends of the surfactant chains. These forces are only strong enough to hold the molecules together as a liquid. Between 30 and 37 °C the surfactant chains arrange themselves in an ordered pattern, giving the substance liquid-crystalline properties.

“This is a very exciting result with fundamental significance for understanding liquids comprising nanostructured components,” says Mann. “Also, it represents a possible way forward to a novel state of biomolecular matter, and could therefore have a number of important applications, for example in biomedical and sensor technology.”

Author: Stephen Mann, University of Bristol (UK), http://www.chm.bris.ac.uk/inorg/mann/webpage.htm

Title: Solvent-Free Protein Liquids and Liquid Crystals

Angewandte Chemie International Edition 2009, 48, No. 34, 6242–6246, doi: 10.1002/anie.200903100

Stephen Mann | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chm.bris.ac.uk/inorg/mann/webpage.htm

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>