Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More molecules for tuberculosis

14.03.2011
Scientists are collaborating on a new international research project to identify antibiotics that can kill tuberculosis and fight resistant strains.

"We want to accelerate the discovery of new compounds that can be turned into effective drugs," said Professor Tony Maxwell from the John Innes Centre, a key player in "More Medicines for Tuberculosis", a new European research project.

Two billion people are currently infected with TB and three million die every year. TB causes more deaths than any other infectious disease. Rates are increasing, especially in sub-Saharan Africa, where people with HIV are particularly vulnerable. It is also associated with intravenous drug use and increased rates may be linked to immigration.

"The bacterium is difficult to get at," said Professor Maxwell. "It is slow growing, spends a lot of time hidden in cells before it makes itself known, and has very tough cell walls of its own."

Treatment is relatively long term, requiring a drug regime over four to six months. Non-compliance is a problem, exacerbating the challenge caused by resistant strains.

"Drug discovery research for tuberculosis is dependent on academic labs and no single lab can do it", said Professor Maxwell.

Scientists from 25 labs across Europe will collaborate on the new project including some groups in the US and India.

The John Innes Centre scientists will focus on compounds that target DNA gyrase, a target that they have already established as effective and safe. They will receive compounds from European collaborators including AstraZeneca. They will screen those that knock out DNA gyrase. Their research will continue on those compounds that are effective both against the target (DNA gyrase) and the bacterium.

Working on new compounds to hit known targets, rather than compounds that may struggle to access bacterial cells or that may have unknown effects in humans, will provide a quicker route to clinical trials.

"Finding new antibiotics that work is only the first step," warns Professor Maxwell.

The next stage will be to determine how exactly the antibiotic compound operates and whether it has a hope of working in a clinical environment.

One group of compounds under study at JIC are naphthoquinones, originally extracted from plants including the toothbrush tree, Euclea natalensis.

The John Innes Centre is an institute of the BBSRC.

Zoe Dunford | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

Further reports about: Centre DNA DNA gyrase Innes Tuberculosis antibiotic compound infectious disease

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>