Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecules identified that help propel cancer metastasis

08.04.2011
For many types of cancer, the original tumor itself is usually not deadly.

Instead, it's the spread of a tiny subpopulation of cells from the primary tumor to other parts of the body—the process known as metastasis—that all too often kills the patient. Now, researchers at Albert Einstein College of Medicine of Yeshiva University have identified two molecules that enable cancer to spread inside the body. These findings could eventually lead to therapies that prevent metastasis by inactivating the molecules.

The regulatory molecules are involved in forming invadopodia, the protrusions that enable tumor cells to turn metastatic – by becoming motile, degrading extracellular material, penetrating blood vessels and, ultimately, seeding themselves in other parts of the body.

The research appears in the April 7 online issue of Current Biology. The study's senior author is John Condeelis, Ph.D., co-chair and professor of anatomy and structural biology, co-director of the Gruss Lipper Biophotonics Center and holder of the Judith and Burton P. Resnick Chair in Translational Research at Einstein.

Dr. Condeelis and his team identified two molecules (p190RhoGEF and p190RhoGAP) that regulate the activity of RhoC, an enzyme that plays a crucial role during tumor metastasis and that has been identified as a biomarker for invasive breast cancer.

"In vitro as well as in vivo studies have shown that RhoC's activity is positively correlated with increased invasion and motility of tumor cells," said corresponding author Jose Javier Bravo-Cordero, Ph.D., a postdoctoral fellow in the labs of Dr. Condeelis and assistant professor Louis Hodgson, Ph.D., in the Gruss Lipper Biophotonics Center and the department of anatomy and structural biology. "The new players we've identified as regulating RhoC could serve as therapeutic drug targets in efforts to block tumor metastasis."

The other researchers in the Einstein study, all in the department of anatomy and structural biology, were M.D./Ph.D. student Matthew Oser, research technician Xiaoming Chen, Robert Eddy, Ph.D., and Dr. Hodgson. This study is the first to employ a new generation of G-protein biosensors that Dr. Hodgson developed. The title of the paper is "A novel spatiotemporal RhoC activation pathway locally regulates cofilin activity at invadopodia."

The research was funded by the National Institutes of Health.

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. During the 2009-2010 academic year, Einstein is home to 722 M.D. students, 243 Ph.D.students, 128 students in the combined M.D./Ph.D. program, and approximately 350 postdoctoral research fellows. The College of Medicine has 2,775 fulltime faculty members located on the main campus and at its clinical affiliates. In 2009, Einstein received more than $155 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving five medical centers in the Bronx, Manhattan and Long Island - which includes Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein - the College of Medicine runs one of the largest post-graduate medical training programs in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training. For more information, please visit www.einstein.yu.edu

Kim Newman | EurekAlert!
Further information:
http://www.einstein.yu.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>