Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecules delivering drugs as they walk

04.08.2010
An octopus-like polymer can "walk" along the wall of a narrow channel as it is pushed through by a solvent. Now research in The Journal of Chemical Physics, which is published by the American Institute of Physics, provides a theoretical model that compares the transport characteristics of straight- and branched-chain polymers in smooth channels as well as in channels whose walls interact with the polymer -- work that could aid in the development of carrier molecules for delivering drugs at a controlled rate in the body.

"The deformability of particles makes them very different from atoms or hard colloids," says author Arash Nikoubashman of Heinrich Heine University of Düsseldorf, Germany. "Equilibrium studies show a huge impact on the self-organization of these molecules and we wanted to know how this aspect expresses itself when the molecules are pushed around by a flowing solvent."

The researchers compared the flow of linear polymers to that of dendrimers, or regularly branched polymers. Results indicate that flow through a narrow channel is independent of the number of monomers in the polymer chain. In a smooth channel, flow is also independent of shape: the linear polymer and the dendrimer both travel in the rapid solvent flow toward the center of the channel. When patches that attract the polymer are placed on the wall, however, the dendrimer "walks" along the wall from patch to patch, while the linear polymer tends to remain close to the wall, moving very slowly, if at all, through the channel.

Possible applications of this research include an understanding to the movement of biological molecules through pores, and the development of dendritic carriers to deliver molecules at a controlled rate. Blood vessels resemble the model channel with patches of differing chemical affinities.

... more about:
»AIP »Chemical Physics »JCP »Molecules »Physic

"At the moment we are investigating the cargo transport capabilities of dendrimers," says Nikoubashman. "Place a guest molecule, such as a drug within a dendrimer that has affinity to specific patches on the vessel wall and let it flow with the solvent." As the dendrimer docks on the patches, it may be possible to deliver the cargo to the dock while the carrier washes away with the flow.

The article, "Flow-induced polymer translocation through narrow and patterned Channels" by Arash Nikoubashman and Christos Likos will appear in The Journal of Chemical Physics. See: http://jcp.aip.org/

Journalists may request a free PDF of this article by contacting jbardi@aip.org

ABOUT THE JOURNAL OF CHEMICAL PHYSICS

The Journal of Chemical Physics publishes concise and definitive reports of significant research in methods and applications of chemical physics. Innovative research in traditional areas of chemical physics such as spectroscopy, kinetics, statistical mechanics, and quantum mechanics continue to be areas of interest to readers of JCP. In addition, newer areas such as polymers, materials, surfaces/interfaces, information theory, and systems of biological relevance are of increasing importance. Routine applications of chemical physics techniques may not be appropriate for JCP. Content is published online daily, collected into four monthly online and printed issues (48 issues per year); the journal is published by the American Institute of Physics. See: http://jcp.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

Further reports about: AIP Chemical Physics JCP Molecules Physic

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>