Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecules on branched-polymer surfaces can capture rare tumor cells in blood

18.11.2011
The removal of rare tumor cells circulating in the blood might be possible with the use of biomolecules bound to dendrimers, highly branched synthetic polymers, which could efficiently sift and capture the diseased cells, according to new research at the University of Illinois at Chicago.

Dendrimers have been used to encapsulate drug molecules and serve as a delivery vehicle, but in the new study they were employed to capture circulating tumor cells by biomimicry -- using nanotechnology to create artificial surfaces much like those in real cells.

"We want to take advantage of what nature gives us," says Seungpyo Hong, lead researcher of the study, published in the journal Angewandte Chemie. "We want to create new biomimetic surfaces that will allow us to remove damaged cells from the blood."

Hong, assistant professor of biopharmaceutical sciences at UIC, and his coworkers created a highly sensitive surface that enables multivalent binding -- the simultaneous binding of many molecules to multiple receptors in a biological system. The biomimetic surface was created using dendrimers of seventh-generation polyamidoamine, or PAMAM, and the anti-epithelial cell adhesion molecule, or aEpCAM.

In the body, cancer cells can detach from a primary tumor and flow throughout the bloodstream, enabling them to seed distant new tumors. Rare and difficult to capture, only a few circulating tumor cells can be found in a milliliter of blood in a cancer patient. By comparison, the same volume of blood contains several million white blood cells and a billion red blood cells, Hong said.

Three breast cancer cell lines were used as circulating tumor cell models, with each used to compare the cell adhesion of the dendrimer surfaces to a linear polymer of polyethylene glycol. PEG is commonly used to bind molecules to improve the safety and efficiency of therapeutics.

The nano-scale PAMAM dendrimers were chosen because their size and surface dimension could accommodate multiple anti-epithelial cell adhesion molecules, Hong said. This enabled the multivalent binding, along with the physiological process of "cell rolling" induced by E-selectin, which mimics the process by which circulating tumor cells are recruited to the endothelia and enhances the surface sensitivity toward tumor cells.

The surface developed by the UIC research team demonstrated up to a million-fold increase in binding strength, and up to 7-fold increase in detection efficiency, as compared to the aEpCAM-coated PEG surface that is the current gold standard for circulating tumor cell detection.

Hong says this is the first study to capture the tumor cells on the surface exploiting the multivalent effect, which is most likely due to the spherical architecture of dendrimers. The research was selected as a "Hot Paper" by Angewandte Chemie and highlighted in Faculty of 1000 by Donald Tomalia, the inventor of PAMAM dendrimers.

The results demonstrate that the combination of nanotechnology and biomimicry has a "great potential to be applied for highly sensitive detection of rare tumor cells from blood," Hong said.

Co-authors are David Eddington, associate professor of bioengineering at UIC; and research assistants Ja Hye Myung, Khyati Gajjar and Jelena Saric. The research was funded through a grant from the National Science Foundation.

Sam Hostettler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>