Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecules on branched-polymer surfaces can capture rare tumor cells in blood

18.11.2011
The removal of rare tumor cells circulating in the blood might be possible with the use of biomolecules bound to dendrimers, highly branched synthetic polymers, which could efficiently sift and capture the diseased cells, according to new research at the University of Illinois at Chicago.

Dendrimers have been used to encapsulate drug molecules and serve as a delivery vehicle, but in the new study they were employed to capture circulating tumor cells by biomimicry -- using nanotechnology to create artificial surfaces much like those in real cells.

"We want to take advantage of what nature gives us," says Seungpyo Hong, lead researcher of the study, published in the journal Angewandte Chemie. "We want to create new biomimetic surfaces that will allow us to remove damaged cells from the blood."

Hong, assistant professor of biopharmaceutical sciences at UIC, and his coworkers created a highly sensitive surface that enables multivalent binding -- the simultaneous binding of many molecules to multiple receptors in a biological system. The biomimetic surface was created using dendrimers of seventh-generation polyamidoamine, or PAMAM, and the anti-epithelial cell adhesion molecule, or aEpCAM.

In the body, cancer cells can detach from a primary tumor and flow throughout the bloodstream, enabling them to seed distant new tumors. Rare and difficult to capture, only a few circulating tumor cells can be found in a milliliter of blood in a cancer patient. By comparison, the same volume of blood contains several million white blood cells and a billion red blood cells, Hong said.

Three breast cancer cell lines were used as circulating tumor cell models, with each used to compare the cell adhesion of the dendrimer surfaces to a linear polymer of polyethylene glycol. PEG is commonly used to bind molecules to improve the safety and efficiency of therapeutics.

The nano-scale PAMAM dendrimers were chosen because their size and surface dimension could accommodate multiple anti-epithelial cell adhesion molecules, Hong said. This enabled the multivalent binding, along with the physiological process of "cell rolling" induced by E-selectin, which mimics the process by which circulating tumor cells are recruited to the endothelia and enhances the surface sensitivity toward tumor cells.

The surface developed by the UIC research team demonstrated up to a million-fold increase in binding strength, and up to 7-fold increase in detection efficiency, as compared to the aEpCAM-coated PEG surface that is the current gold standard for circulating tumor cell detection.

Hong says this is the first study to capture the tumor cells on the surface exploiting the multivalent effect, which is most likely due to the spherical architecture of dendrimers. The research was selected as a "Hot Paper" by Angewandte Chemie and highlighted in Faculty of 1000 by Donald Tomalia, the inventor of PAMAM dendrimers.

The results demonstrate that the combination of nanotechnology and biomimicry has a "great potential to be applied for highly sensitive detection of rare tumor cells from blood," Hong said.

Co-authors are David Eddington, associate professor of bioengineering at UIC; and research assistants Ja Hye Myung, Khyati Gajjar and Jelena Saric. The research was funded through a grant from the National Science Foundation.

Sam Hostettler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>