Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecule Prompts Damaged Heart Cells to Repair Themselves After a Heart Attack

A protein that the heart produces during its early development reactivates the embryonic coronary developmental program and initiates migration of heart cells and blood vessel growth after a heart attack, researchers at UT Southwestern Medical Center have found.

The molecule, Thymosin beta-4 (TB4), is expressed by embryos during the heart’s development and encourages migration of heart cells. The new findings in mice suggest that introducing TB4 systemically after a heart attack encourages new growth and repair of heart cells.

The research findings indicate that the molecule affects developmental gene expression as early as 24 hours after systemic injection. The UT Southwestern study is online and will appear in an upcoming issue of the Journal of Molecular and Cellular Cardiology.

“This molecule has the potential to reprogram cells in the body to get them to do what you want them to do,” said Dr. J. Michael DiMaio, associate professor of cardiothoracic surgery at UT Southwestern and senior author of the study. Obviously, the clinical implications of this are enormous because of the potential to reverse damage inflicted on heart cells after a heart attack.”

Tremendous medical progress has been made to counter the damaging effects of heart attacks, but ordinarily, mammalian hearts are incapable of repairing themselves following damage. They are also limited in their ability to form new blood vessels. Earlier studies demonstrated that TB4 is expressed in the embryonic heart and stimulates cardiac vessels to form. It was therefore thought that introduction of TB4 might activate new vessel growth in the adult heart.

In this mouse study researchers found that TB4 initiates capillary tube formation of adult coronary endothelial cells in tissue culture. The molecule also encourages cardiac regeneration by inhibiting death in heart cells after an injury such as a heart attack and by stimulating new vessel growth.

“We observed that by injecting this protein systemically, there was increased cardiac function after a heart attack,” said Dr. Ildiko Bock-Marquette, assistant professor of cardiothoracic surgery at UT Southwestern and the study’s lead author. “We hope this protein can inhibit cell death that occurs during a heart attack in the short term, and that it may initiate new growth of coronary vessels by activating progenitor cells in the long term.”

Researchers assessed the effect of TB4 on new vessel growth in adult mice after inducing heart attacks and then following up by introducing TB4 into the animals. An examination of the capillary smooth muscle cells following treatment with TB4 showed a significant increase in capillary density in the heart three days afterward near the site of the heart attack, the scientists reported.

Further studies will examine whether the same events occur in larger mammals and which receptors are responsible for the action of this molecule.

Other UT Southwestern researchers involved in the study were Santwana Shrivastava, research assistant; and John Shelton, senior research scientist. Study authors also included Dr. Teg Pipes, former postdoctoral fellow; Jeffrey Thatcher, a doctoral candidate in biomedical engineering; Dr. Cristi Galindo, postdoctoral research fellow; and co-senior author, Dr. Eric Olson, chairman of molecular biology.

The work was supported by the Ted Nash Long Life Foundation, the American Heart Association, and the National Institutes of Health.

Visit to learn more about UT Southwestern’s clinical services in cardiology and cardiothoracic and vascular surgery.

Dr. J. Michael DiMaio --,2356,36393,00.html

Katherine Morales | Newswise Science News
Further information:,2356,36393,00.html

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>