Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule involved in heart failure now implicated in heart attack damage

16.09.2010
A molecule known to be involved in progressive heart failure has now been shown to also lead to permanent damage after a heart attack, according to researchers at Thomas Jefferson University.

To prove this novel conclusion, the research team used gene therapy to inhibit the small protein, kinase known as G protein-coupled receptor kinase 2 (GRK2), and found heart muscles cells in mice were substantially protected against destruction that would otherwise occur after an induced myocardial infarction (MI), or heart attack.

Conversely, mice engineered to express excess GRK2 had more damage than would have been expected after an MI, the researchers say in the article currently found online at Circulation Research and to be published in the October 29th issue.

These finding suggest that humans experiencing a heart attack might be helped with delivery of a therapeutic targeting inhibition of GRK2, says Walter J. Koch, Ph.D., Director of the Center for Translation Medicine at Jefferson.

"Our results clearly show that GRK2 promotes cell death after a heart attack, so an inhibitor of this molecule is likely beneficial in preventing permanent damage, if delivered quickly enough," he says. "Currently, we have a gene therapy approach but for this indication a small molecule would be preferred."

Dr. Koch says that while it may be years before this concept can be tested in patients experiencing an MI, he expects anti-GRK2 gene therapy will be tested in patients with heart failure much sooner. A Phase I clinical trial for GRK2-targeted gene therapy is preparing to be launched, pending federal approval.

Dr. Koch and his colleagues have been working for 15 years to link GRK2 to heart failure in patients. They have demonstrated that the protein puts a brake on the beta-adrenergic receptors that respond to hormones (adrenalin and noradrenalin) that drive the heart beat – the rate and force of contractile function in heart cells. This braking action is enhanced in chronic heart failure, and relieving it by inhibiting activity and expression of GRK2 allows the heart to work better, the researchers have shown in animal studies using gene therapy.

The question they looked at in this study is whether GRK2 plays any role after a heart attack. Most cardiology researchers theorized that it was protective, because expression of the protein is increased by three to four times immediately after a heart attack, Dr. Koch says. "People always thought that GRK2 was working to shut off beta receptors because injured hearts were pumping out too much adrenaline, and that this blocking of over activity in an injured heart is protective."

But what the researchers discovered is that over production of GRK2 following a heart attack actually stimulates pro-death pathways in myocyctes (heart cells) outside of the initial zone of damage. They specifically found an inverse link between GRK2 activity and the production of nitric oxide (NO), a molecular messenger that protects the heart against damage caused by a sudden loss of blood. "When there is more GRK2, there is less NO, and vice versa," Dr. Koch says. They believe that GRK2 may be affecting NO production by inhibiting the prosurvival protein kinase Akt, which itself regulates NO. (more)

The mice MI studies then proved that inhibiting GRK2 protected heart cells, Dr. Koch says.

"Our results clearly show that GRK2 is a pathological target in the heart, involved in both progressive heart failure and in death of heart cells after a heart attack," he says.

The study was supported in part from grants from the National Institutes of Health and the American Heart Association.

Rick Cushman | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: GRK2 Molecule gene therapy heart cells heart failure

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>