Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One molecule, many more insulin-producing cells to treat diabetes, says Pitt team

28.07.2010
With a single stimulatory molecule, human insulin-producing beta cell replication can be sustained for at least four weeks in a mouse model of diabetes, according to researchers at the University of Pittsburgh School of Medicine in Diabetes, a journal of the American Diabetes Association.

They also found several cocktails of molecules that drive human beta cells to replicate, as well as important differences between mouse and human beta cells that could influence how these approaches are best used to treat diabetes, which is caused by insufficient insulin production leading to abnormal blood sugar levels.

"Our team was the first to show that adult human beta cells can be induced to proliferate or grow at substantial rates, which no one thought possible before," said senior author Andrew F. Stewart, M.D., professor of medicine and chief of the Division of Endocrinology and Metabolism, Pitt School of Medicine. "Now our effort has been to unravel these regulatory pathways to find the most effective strategy that will allow us to treat – and perhaps cure – diabetes by making new insulin-producing cells."

In a series of experiments, lead author Nathalie M. Fiaschi-Taesch, Ph.D., assistant professor of endocrinology, and the team discovered that combining elevated amounts of the regulatory molecules cdk4 or cdk6 with a variety of D-cyclin proteins, particularly cyclin D3, stimulates human beta cell replication in test tubes.

... more about:
»School

"We didn't expect cyclin D3 to ramp up beta cell replication so strongly when it was used with either cdk4 or cdk6," Dr. Fiaschi-Taesch said. "There was no known role for cyclin D3 in human beta cell physiology."

Cyclin D2 is present in and essential for rodent beta cell replication and function, but the team showed that molecule is barely detectable in human cells, and beta cell replication could be sustained for at least four weeks in a model in which mice were transplanted with human beta cells engineered to overproduce cdk6. Blood sugar normalized in the diabetic mice transplanted with surprisingly small numbers of human beta cells, indicating that the cells functioned properly to produce needed insulin.

Mice don't appear to make cdk6 naturally, but they do have cdk4 and cyclins D1 and D2, so standard rodent studies of beta replication might have led scientists to pursue the wrong molecules in their quest to stimulate human beta cell replication, Dr. Stewart noted.

He and his colleagues continue to explore many other regulatory proteins that could play a role in encouraging or thwarting beta cell replication.

Other authors of the paper include Fatimah Salim, Jeffrey Kleinberger, Ronnie Troxell, Karen Selk, Edward Cherok, Karen K. Takane, Ph.D., and Donald K. Scott, Ph.D., all of the Division of Endocrinology and Metabolism, Department of Medicine, Pitt School of Medicine; and Irene Cozar-Castellano, Ph.D., Unidad de Investigacion, Hospital Universitario Puerta del Mar, Cadiz, Spain.

The research was funded by grants from the National Institute of Diabetes and Digestive and Kidney Diseases, the Juvenile Diabetes Research Foundation, the Spanish Ministry of Science and Innovation, and the Pam and Scott Kroh and the Don and Arleen Wagner family foundations.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997 and now ranks fifth in the nation, according to preliminary data for fiscal year 2008. Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see www.medschool.pitt.edu.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu
http://www.medschool.pitt.edu

Further reports about: School

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>