Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One molecule, many more insulin-producing cells to treat diabetes, says Pitt team

28.07.2010
With a single stimulatory molecule, human insulin-producing beta cell replication can be sustained for at least four weeks in a mouse model of diabetes, according to researchers at the University of Pittsburgh School of Medicine in Diabetes, a journal of the American Diabetes Association.

They also found several cocktails of molecules that drive human beta cells to replicate, as well as important differences between mouse and human beta cells that could influence how these approaches are best used to treat diabetes, which is caused by insufficient insulin production leading to abnormal blood sugar levels.

"Our team was the first to show that adult human beta cells can be induced to proliferate or grow at substantial rates, which no one thought possible before," said senior author Andrew F. Stewart, M.D., professor of medicine and chief of the Division of Endocrinology and Metabolism, Pitt School of Medicine. "Now our effort has been to unravel these regulatory pathways to find the most effective strategy that will allow us to treat – and perhaps cure – diabetes by making new insulin-producing cells."

In a series of experiments, lead author Nathalie M. Fiaschi-Taesch, Ph.D., assistant professor of endocrinology, and the team discovered that combining elevated amounts of the regulatory molecules cdk4 or cdk6 with a variety of D-cyclin proteins, particularly cyclin D3, stimulates human beta cell replication in test tubes.

... more about:
»School

"We didn't expect cyclin D3 to ramp up beta cell replication so strongly when it was used with either cdk4 or cdk6," Dr. Fiaschi-Taesch said. "There was no known role for cyclin D3 in human beta cell physiology."

Cyclin D2 is present in and essential for rodent beta cell replication and function, but the team showed that molecule is barely detectable in human cells, and beta cell replication could be sustained for at least four weeks in a model in which mice were transplanted with human beta cells engineered to overproduce cdk6. Blood sugar normalized in the diabetic mice transplanted with surprisingly small numbers of human beta cells, indicating that the cells functioned properly to produce needed insulin.

Mice don't appear to make cdk6 naturally, but they do have cdk4 and cyclins D1 and D2, so standard rodent studies of beta replication might have led scientists to pursue the wrong molecules in their quest to stimulate human beta cell replication, Dr. Stewart noted.

He and his colleagues continue to explore many other regulatory proteins that could play a role in encouraging or thwarting beta cell replication.

Other authors of the paper include Fatimah Salim, Jeffrey Kleinberger, Ronnie Troxell, Karen Selk, Edward Cherok, Karen K. Takane, Ph.D., and Donald K. Scott, Ph.D., all of the Division of Endocrinology and Metabolism, Department of Medicine, Pitt School of Medicine; and Irene Cozar-Castellano, Ph.D., Unidad de Investigacion, Hospital Universitario Puerta del Mar, Cadiz, Spain.

The research was funded by grants from the National Institute of Diabetes and Digestive and Kidney Diseases, the Juvenile Diabetes Research Foundation, the Spanish Ministry of Science and Innovation, and the Pam and Scott Kroh and the Don and Arleen Wagner family foundations.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997 and now ranks fifth in the nation, according to preliminary data for fiscal year 2008. Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see www.medschool.pitt.edu.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu
http://www.medschool.pitt.edu

Further reports about: School

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>