Molecule's Role in Cancer Suggests New Combination Therapy

The study, published online in the journal PLoS One on Feb. 29, suggests that two common cancer-fighting strategies may have “tremendous synergy” if used in combination, says Andrei Gartel, UIC associate professor of biochemistry and molecular genetics and medicine and principal investigator on the study.

Damage to a cell's DNA can set in motion a cascade of signals that triggers programmed cell death, or apoptosis. Radiation therapy and many chemotherapy agents target and damage DNA somewhat selectively in rapidly dividing cells, making them useful in fighting cancer. But many cancer cells develop resistance over the course of treatment and block the suicide pathway.

Based on the observation that a protein molecule in cancer cells called FOXM1 is elevated following DNA damage, Gartel and his co-author sought to investigate whether FOXM1 might have a role in protecting cancer cells from apoptosis.

Using human cancer cells that were exposed to either chemicals or radiation to damage DNA, the researchers used a variety of techniques to decrease the levels of FOXM1 in these cells.

“We found a significant increase in DNA-damage-induced apoptosis in cells with diminished levels of FOXM1,” Gartel said. The results were the same no matter what caused the DNA damage, or what method the researchers used to reduce FOXM1.

The researchers were able to show that FOXM1 short-circuits apoptosis by suppressing the activity of another protein, JNK, which otherwise stimulates cell death, and by turning up an anti-apoptosis protein called Bcl-2.

Besides the radiation and chemotherapy drugs long used in cancer treatment, a newer class of chemotherapy agents called proteasome inhibitors has been showing promise. All known proteasome inhibitors reduce levels of FOXM1, Gartel said.

By combining standard chemotherapy drugs with proteasome inhibitors — some of which are already FDA-approved for cancer treatment — the drugs' effectiveness may be improved, he said.

The study was supported by grants from the National Institutes of Health. Marianna Halasi, a UIC graduate student in biochemistry and molecular genetics, is the first author on the paper.

For more information about the University of Illinois Medical Center, visit www.uillinoismedcenter.or

Media Contact

Jeanne Galatzer-Levy Newswise Science News

More Information:

http://www.uic.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors