Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Visual Illusion

09.06.2011
Aromatic ring system reminiscent of M.C. Escher’s Penrose stairs

Who hasn’t seen M.C. Escher’s famous picture of the stairs that appear to always go up even though they form a closed circle? This tricky visual illusion is also known as a Penrose stair, named after its discoverers, Lionel and Roger Penrose. Hiroyuki Isobe and a team at Tohoku and Tsukuba University (Japan) have now introduced a molecule in the journal Angewandte Chemie that looks like a Penrose stair.

In order to depict the composition and structure of molecules, these three-dimensional objects are represented as two-dimensional line drawings. An additional touch of perspective is often added in order to show the spatial orientation of the individual molecular components relative to each other.

Two-dimensional drawings can fool the eye so that the observer sees a three-dimensional object that is impossible in reality. We are fascinated and amused by looking at such visual illusions as M.C. Escher liked to draw them. One of his most famous works is a lithograph based on the Penrose stair; people in the image walk in a circle although they appear to be constantly descending the stair.

The scientists working with Isobe were reminded of this stair when they synthesized a molecule belonging to the cyclobis[4]helicene class and attempted to represent it as a line drawing. Helicenes consist of planar aromatic rings made of six carbon atoms. The rings are connected along one edge, forming an angle. For spatial reasons, the molecules are forced to twist into spirals. A [4]helicene is made of four connected rings. The Japanese researchers connected two such units through two single bonds.

Helices can twist around to the right or left. In these rings made of two helicenes, both helicene units twist in the same direction. When represented as a two-dimensional perspective line drawing, the double helicene gives the impression of a Penrose stair: both halves lead downstairs but after going around the circuit the eye is right back at the starting point.

How can this be? The molecule is clearly not an impossible object; it exits and its structure is not different than supposed. The solution to this conundrum is revealed when the molecule is represented from the side: the axial twist of the single bonds between the two building blocks makes the tilted orientation of the helicene ring systems possible.

Isobe hopes that this class of molecules will open up new possibilities as a building block for liquid crystals.

Author: Hiroyuki Isobe, Tohoku University (Japan), http://www.orgchem2.chem.tohoku.ac.jp/Isobe/Curriculum_Vitae.html
Title: Illusory Molecular Equivalent of "Penrose Stairs" from an Aromatic Hydrocarbon

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201102210

Hiroyuki Isobe | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>