Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Transport Logistics

25.05.2010
The Handicraft Of Cellular Transport Complexes

A protein complex, which is an important link in a cellular transport chain, also initiates the assembly of the next link in the chain.

This newly-won insight will now allow a better understanding of a transport process that plays a crucial role in numerous cellular processes including virus infections, cell division and signal transmission. The additional function of the ESCRT-II transport complex was discovered during the course of a research project funded by the Austrian Science Fund FWF and recently reported in The EMBO Journal .

Virus infections, cell division and signal transmission have something in common: they make use of a "protein machine" that actually controls a cell disposal process. The assembly of this molecular "machine" is highly controlled and is mainly influenced by five particular protein complexes. The protein complexes in question are referred to as ESCRTs (endosomal-sorting complex required for transport). A team from Innsbruck Medical University and Cornell University in the USA has now discovered a surprising function of one of the ESCRT complexes (No II): ESCRT-II also initiates the assembly of ESCRT-III, the central complex in the transport chain.

MOLECULAR TRAFFIC CONTROL
All ESCRTs share the function of loading the cellular transport vesicles (MVB - multi vesicular bodies) with cell surface components that have become "unwanted". For this purpose, the ESCRTs are generated only temporarily. Dr. David Teis from the Division of Cell Biology at Innsbruck Medical Hospital explains the new function of one of the ESCRTs discovered by his team as follows: "A part of ESCRT-II, known as Vps25, triggers a kind of chain reaction, which initially gives rise to a structural change in another protein called Vps20. Vps20 is more or less activated by the structural change and other proteins - SnF7s - can then group around Vps20. Subsequently, the rest of the ESCRT-III forms around this starting point. In this way, ESCRT-II initiates the assembly of ESCRT-III."

To be more precise, approximately 10 - 20 Snf7 proteins must assemble in a defined ring-like form so that the other ESCRT-III components can be added as required. It is precisely this ring-like grouping of the Snf7 proteins that is influenced by the Vps25. The team working with Dr. Teis was able to discover this through experiments involving the clever modification of ESCRT-IIs: instead of the usual two Vps25s, only one was used for ESCRT-II. Dr. Teis explains: "This enabled us to show that, despite the reduced number of Vps25s in the ESCRT-II, the Snf7s still grouped together. However, the molecules that assembled in this way were not able to fulfill the biological function of ESCRT-III."

NO "O" WITHOUT "Y"
Based on the known fact that the two Vps25 proteins of the ESCRT-II form a Y-shaped structure, Dr. Teis made the following deduction from this finding: the two arms of the Y formed by the Vps25 together enable the suitable ring-shaped arrangement of the Snf7 molecules. While one "arm" is sufficient to group the Snf7s, two Snf7s must be deposited - one on each arm - for the spatial structure to accommodate the further assembly of the ESCRT-III.

This ring structure then acts as a kind of master copy for the MBV transport vesicles. This assumption was confirmed in a further experiment which Dr. Teis carried out with his co-operation partner Professor Scott Emr from Cornell University in the USA. For this experiment, more Snf7 molecules than usual were formed in cells with an altered molecular composition. The result? The vesicles that formed in these cells were significantly larger - providing a clear indication of the role of the Snf7 protein as a master copy.

In summary, these results, stemming from an FWF project, not only reveal the extent to which this cellular disposal mechanism is finely tuned, but also demonstrate its hitherto unknown capacity for molecular self-assembly.

Image and text will be available from Tuesday, 25th May 2010, 9.00 a.m. CET onwards:

http://www.fwf.ac.at/en/public_relations/press/pv201005-en.html

Original publication: ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation, D. Teis, S. Saksena, B. Judson and S. D. Emr, The EMBO Journal (2010) 29, 871 - 883 doi:10.1038/emboj.2009.408

Scientific contact:
Dr. David Teis
Innsbruck Medical University
Division of Cell Biology
Fritz-Pregl Str. 3
6020 Innsbruck
T +43 / 512 / 9003 - 70175
E david.teis@i-med.ac.at
The Austrian Research Foundation FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Publication and distribution:
PR&D - Public Relations für Forschung & Bildung Campus Vienna Biocenter 2 1030 Vienna T +43 / 1 / 505 70 44 E contact@prd.at W http://www.prd.at

| PR&D
Further information:
http://www.fwf.ac.at

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>