Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Transport Logistics

25.05.2010
The Handicraft Of Cellular Transport Complexes

A protein complex, which is an important link in a cellular transport chain, also initiates the assembly of the next link in the chain.

This newly-won insight will now allow a better understanding of a transport process that plays a crucial role in numerous cellular processes including virus infections, cell division and signal transmission. The additional function of the ESCRT-II transport complex was discovered during the course of a research project funded by the Austrian Science Fund FWF and recently reported in The EMBO Journal .

Virus infections, cell division and signal transmission have something in common: they make use of a "protein machine" that actually controls a cell disposal process. The assembly of this molecular "machine" is highly controlled and is mainly influenced by five particular protein complexes. The protein complexes in question are referred to as ESCRTs (endosomal-sorting complex required for transport). A team from Innsbruck Medical University and Cornell University in the USA has now discovered a surprising function of one of the ESCRT complexes (No II): ESCRT-II also initiates the assembly of ESCRT-III, the central complex in the transport chain.

MOLECULAR TRAFFIC CONTROL
All ESCRTs share the function of loading the cellular transport vesicles (MVB - multi vesicular bodies) with cell surface components that have become "unwanted". For this purpose, the ESCRTs are generated only temporarily. Dr. David Teis from the Division of Cell Biology at Innsbruck Medical Hospital explains the new function of one of the ESCRTs discovered by his team as follows: "A part of ESCRT-II, known as Vps25, triggers a kind of chain reaction, which initially gives rise to a structural change in another protein called Vps20. Vps20 is more or less activated by the structural change and other proteins - SnF7s - can then group around Vps20. Subsequently, the rest of the ESCRT-III forms around this starting point. In this way, ESCRT-II initiates the assembly of ESCRT-III."

To be more precise, approximately 10 - 20 Snf7 proteins must assemble in a defined ring-like form so that the other ESCRT-III components can be added as required. It is precisely this ring-like grouping of the Snf7 proteins that is influenced by the Vps25. The team working with Dr. Teis was able to discover this through experiments involving the clever modification of ESCRT-IIs: instead of the usual two Vps25s, only one was used for ESCRT-II. Dr. Teis explains: "This enabled us to show that, despite the reduced number of Vps25s in the ESCRT-II, the Snf7s still grouped together. However, the molecules that assembled in this way were not able to fulfill the biological function of ESCRT-III."

NO "O" WITHOUT "Y"
Based on the known fact that the two Vps25 proteins of the ESCRT-II form a Y-shaped structure, Dr. Teis made the following deduction from this finding: the two arms of the Y formed by the Vps25 together enable the suitable ring-shaped arrangement of the Snf7 molecules. While one "arm" is sufficient to group the Snf7s, two Snf7s must be deposited - one on each arm - for the spatial structure to accommodate the further assembly of the ESCRT-III.

This ring structure then acts as a kind of master copy for the MBV transport vesicles. This assumption was confirmed in a further experiment which Dr. Teis carried out with his co-operation partner Professor Scott Emr from Cornell University in the USA. For this experiment, more Snf7 molecules than usual were formed in cells with an altered molecular composition. The result? The vesicles that formed in these cells were significantly larger - providing a clear indication of the role of the Snf7 protein as a master copy.

In summary, these results, stemming from an FWF project, not only reveal the extent to which this cellular disposal mechanism is finely tuned, but also demonstrate its hitherto unknown capacity for molecular self-assembly.

Image and text will be available from Tuesday, 25th May 2010, 9.00 a.m. CET onwards:

http://www.fwf.ac.at/en/public_relations/press/pv201005-en.html

Original publication: ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation, D. Teis, S. Saksena, B. Judson and S. D. Emr, The EMBO Journal (2010) 29, 871 - 883 doi:10.1038/emboj.2009.408

Scientific contact:
Dr. David Teis
Innsbruck Medical University
Division of Cell Biology
Fritz-Pregl Str. 3
6020 Innsbruck
T +43 / 512 / 9003 - 70175
E david.teis@i-med.ac.at
The Austrian Research Foundation FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Publication and distribution:
PR&D - Public Relations für Forschung & Bildung Campus Vienna Biocenter 2 1030 Vienna T +43 / 1 / 505 70 44 E contact@prd.at W http://www.prd.at

| PR&D
Further information:
http://www.fwf.ac.at

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>