Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Transport Logistics

25.05.2010
The Handicraft Of Cellular Transport Complexes

A protein complex, which is an important link in a cellular transport chain, also initiates the assembly of the next link in the chain.

This newly-won insight will now allow a better understanding of a transport process that plays a crucial role in numerous cellular processes including virus infections, cell division and signal transmission. The additional function of the ESCRT-II transport complex was discovered during the course of a research project funded by the Austrian Science Fund FWF and recently reported in The EMBO Journal .

Virus infections, cell division and signal transmission have something in common: they make use of a "protein machine" that actually controls a cell disposal process. The assembly of this molecular "machine" is highly controlled and is mainly influenced by five particular protein complexes. The protein complexes in question are referred to as ESCRTs (endosomal-sorting complex required for transport). A team from Innsbruck Medical University and Cornell University in the USA has now discovered a surprising function of one of the ESCRT complexes (No II): ESCRT-II also initiates the assembly of ESCRT-III, the central complex in the transport chain.

MOLECULAR TRAFFIC CONTROL
All ESCRTs share the function of loading the cellular transport vesicles (MVB - multi vesicular bodies) with cell surface components that have become "unwanted". For this purpose, the ESCRTs are generated only temporarily. Dr. David Teis from the Division of Cell Biology at Innsbruck Medical Hospital explains the new function of one of the ESCRTs discovered by his team as follows: "A part of ESCRT-II, known as Vps25, triggers a kind of chain reaction, which initially gives rise to a structural change in another protein called Vps20. Vps20 is more or less activated by the structural change and other proteins - SnF7s - can then group around Vps20. Subsequently, the rest of the ESCRT-III forms around this starting point. In this way, ESCRT-II initiates the assembly of ESCRT-III."

To be more precise, approximately 10 - 20 Snf7 proteins must assemble in a defined ring-like form so that the other ESCRT-III components can be added as required. It is precisely this ring-like grouping of the Snf7 proteins that is influenced by the Vps25. The team working with Dr. Teis was able to discover this through experiments involving the clever modification of ESCRT-IIs: instead of the usual two Vps25s, only one was used for ESCRT-II. Dr. Teis explains: "This enabled us to show that, despite the reduced number of Vps25s in the ESCRT-II, the Snf7s still grouped together. However, the molecules that assembled in this way were not able to fulfill the biological function of ESCRT-III."

NO "O" WITHOUT "Y"
Based on the known fact that the two Vps25 proteins of the ESCRT-II form a Y-shaped structure, Dr. Teis made the following deduction from this finding: the two arms of the Y formed by the Vps25 together enable the suitable ring-shaped arrangement of the Snf7 molecules. While one "arm" is sufficient to group the Snf7s, two Snf7s must be deposited - one on each arm - for the spatial structure to accommodate the further assembly of the ESCRT-III.

This ring structure then acts as a kind of master copy for the MBV transport vesicles. This assumption was confirmed in a further experiment which Dr. Teis carried out with his co-operation partner Professor Scott Emr from Cornell University in the USA. For this experiment, more Snf7 molecules than usual were formed in cells with an altered molecular composition. The result? The vesicles that formed in these cells were significantly larger - providing a clear indication of the role of the Snf7 protein as a master copy.

In summary, these results, stemming from an FWF project, not only reveal the extent to which this cellular disposal mechanism is finely tuned, but also demonstrate its hitherto unknown capacity for molecular self-assembly.

Image and text will be available from Tuesday, 25th May 2010, 9.00 a.m. CET onwards:

http://www.fwf.ac.at/en/public_relations/press/pv201005-en.html

Original publication: ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation, D. Teis, S. Saksena, B. Judson and S. D. Emr, The EMBO Journal (2010) 29, 871 - 883 doi:10.1038/emboj.2009.408

Scientific contact:
Dr. David Teis
Innsbruck Medical University
Division of Cell Biology
Fritz-Pregl Str. 3
6020 Innsbruck
T +43 / 512 / 9003 - 70175
E david.teis@i-med.ac.at
The Austrian Research Foundation FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Publication and distribution:
PR&D - Public Relations für Forschung & Bildung Campus Vienna Biocenter 2 1030 Vienna T +43 / 1 / 505 70 44 E contact@prd.at W http://www.prd.at

| PR&D
Further information:
http://www.fwf.ac.at

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>