Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Switches in the Cellular Power Plants

12.09.2012
Freiburg Researchers Discover a New Basic Principle of the Architecture of Mitochondria

A team of scientists at the University of Freiburg led by Dr. Martin van der Laan has achieved groundbreaking new insights into the structure of mitochondria. Mitochondria are the microscopic power plants of the cell that harness the energy stored in food, thus enabling central life functions.


The protein complex MINOS plays a key role in the formation of the two membrane systems of mitochondria. MINOS is necessary for the architecture of the inner membrane and helps TOM and SAM embed proteins in the outer membrane by forming membrane bridges. Source: Ralf Zerbes

This conversion of energy takes place in delicately formed cavities of the biological membranes inside mitochondria. Defects in these fine membrane structures can lead to severe diseases of the muscles and the central nervous system.

A sophisticated molecular machine of the inner membrane that the Freiburg team already discovered in 2011 is not only responsible for forming the characteristic structures within mitochondria but evidently also plays an important role in assembling the outer membrane enclosing these organelles, as the scientists now report in the renowned journal Molecular Biology of the Cell.

The protein machine studied by the scientists is essential for maintaining the typical architecture inside the mitochondria and have thus received the name “Mitochondrial Inner Membrane Organizing System” (MINOS). In their latest study, the Freiburg researchers and their colleagues in Graz, Austria, Warsaw, Poland, and Groningen, Netherlands, demonstrate that the role of MINOS in creating the mitochondrial architecture is clearly more extensive than previously assumed.

In a joint research effort between the Collaborative Research Center 746 and the Cluster of Excellence Centre for Biological Signalling Studies (BIOSS), Dr. Maria Bohnert, Lena-Sophie Wenz, and Ralf Zerbes found out how MINOS connects the distinct membrane systems of the mitochondria with each other.

The membrane complexes SAM and TOM play a key role in this process. They use tunnel-shaped structures to transport proteins into the mitochondrion and then embed them in the outer membrane. In their latest study, the Freiburg scientists demonstrate that the MINOS component Fcj1 of the Mitofilin protein family participates directly in this process, which is essential for the survival of the cells.

The inactivation of Fcj1 inhibits the integration of proteins into the mitochondrial outer membrane. These findings show how molecular switches affecting the connectivity of mitochondrial membranes control the assembly and function of the cellular power plants. These newly gained insights improve our understanding of the basic principles of the architecture of mitochondria. In the future they could help scientists to understand and influence mechanisms of diseases that involve changes in the fine structure of mitochondria.

Original Publication:
Bohnert M, Wenz LS, Zerbes RM, Horvath SE, Stroud DA, von der Malsburg K, Müller JM, Oeljeklaus S, Perschil I, Warscheid B, Chacinska A, Veenhuis M, van der Klei IJ, Daum G, Wiedemann N, Becker T, Pfanner N, van der Laan M: "Role of MINOS in protein biogenesis of the mitochondrial outer membrane", in: Molecular Biology of the Cell, published online August 23, 2012.

http://www.molbiolcell.org/content/early/2012/08/20/mbc.E12-04-0295

Contact:
PD Dr. Martin van der Laan
Institute of Biochemistry and Molecular Biology
Collaborative Research Center 746
University of Freiburg
Phone: 0049 (0)761/203-5270
E-Mail: martin.van.der.laan@biochemie.uni-freiburg.de

Dr. Martin van der Laan | University of Freiburg
Further information:
http://www.uni-freiburg.de

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>