Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Molecular switch” discovered in Parkinson’s protein

23.01.2014
In one variant of Parkinson’s disease, the enzyme LRRK2 plays a central role.

Scientists at the University of Kassel have now discovered a mechanism that controls the activity of LRRK2. This opens up new approaches for the development of drugs to counter the disease, which until now is incurable.

Following Alzheimer’s, Parkinson’s disease is the most frequently occurring neuro-degenerative illness. It is estimated that approximately 7 million people suffer from the disease worldwide. A portion of these cases have a hereditary basis and are caused by mutations in specific genes.

These so-called familial Parkinson’s variants occur with varying degrees of frequency in different ethnic groups; certain mutations are particularly widespread in Italy and Spain, for example. Mutations of a protein called LRRK2 are seen as the most frequent cause of inherited Parkinson’s disease.

A research group with scientists from Kassel University has now discovered the “molecular switch” that controls the activity of this protein. “Our results can show ways to develop new drugs to regulate the activity of this protein and thus provide new approaches for the treatment of inherited Parkinson’s disease,” explains Prof. Dr. Friedrich W. Herberg, head of the Department of Biochemistry at Kassel University. “It may also be possible to derive approaches for the treatment of other variants of Parkinson’s from these results.”

The protein LRRK2 is also called “dardarin” from the Basque term “dardara” which means “to tremble”. In human cells, the protein has a mediating function as it delivers phosphates to other proteins. Dardarin has a special and until now not fully clarified role in certain cells of the midbrain which produce the neurotransmitter dopamine. These cells in the midbrain die in persons suffering from Parkinson’s. The resulting lack of dopamine leads to the well-known Parkinson’s symptoms such as muscle tremors, depression or the loss of the sense of smell.

The Kassel researchers have investigated individual areas of the enzyme dardarin very closely. “Proteins are made up of smaller building blocks – amino acids. We were able to determine that in dardarin mutations, which are taken to be responsible for inherited Parkinson’s, the phosphate supply is disturbed in an area around the amino acid 1441,” explains Dipl. Biol. Kathrin Muda, one of the authors of a study that has now appeared in the journal “Proceedings of the National Academy of Science”. “In particular, we found that an additional protein called a 14-3-3 protein can bind in the area 1441 and thus have an effect on the activity of dardarin. In the mutated variants the binding at the dardarin enzyme is disturbed and the activity of dardarin is no longer correctly regulated.” How this then results in the dying off of cells in the middle brain is not yet known. “If a way is found to substitute the binding with 14-3-3 through another mechanism that takes the place of the mutated dardarin variants, then we will have taken a big step in the development of anti-Parkinson’s drugs,” says Muda.

In cooperation with scientists from Tübingen University, from the Helmholtz Center Munich and the German Cancer Research Center Heidelberg, the Kassel researchers make use of so-called mass spectrometry, a process for the weighing of atoms and molecules. Through a comparison of the weight of normal and mutated LRRK2 protein particles, it was possible to draw conclusions about the phosphate supply process in the cells.

One of the focal points of the working group at Kassel University in their research is investigations of protein kinase A, one of the enzymes that is involved as a mediator in many processes in human cells, as for instance with the phosphate supply of LRRK2. In addition to Herberg and Muda, the Kassel scientists Dr. Daniela Bertinetti and Dipl. Biol. Jennifer Sarah Hermann as well as Dr. Frank Gesellchen from Glasgow were also involved in the research efforts. The Biochemistry Department of Kassel University is part of a consortium for research of human proteins (www.affinomics.org). The study received support from the EU, the Otto Braun Fund and the foundation of the actor Michael J. Fox, a sufferer of Parkinson’s disease, among other sources.

Picture of Dipl. Biol. Kathrin Muda (Foto: Uni Kassel):
www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2014/01Muda.jpg
Picture of Prof. Dr. Friedrich W. Herberg (Foto: Uni Kassel):
www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2014/02Herberg.jpg
Link to the study: www.pnas.org/content/early/2013/12/17/1312701111.abstract
Contact:
Prof. Dr. Friedrich W. Herberg
University of Kassel
Department of Biochemistry
Tel.: +49 561 804-4511
E-Mail: herberg@uni-kassel.de
Dipl. Biol. Kathrin Muda
University of Kassel
Department of Biochemistry
Tel.: +49 561 804-4479
E-Mail: kathrinmuda@uni-kassel.de

Sebastian Mense | idw
Further information:
http://www.uni-kassel.de
http://www.uni-kassel.de/uni/nc/universitaet/nachrichten/article/uni-kassel-molekularer-schalter-bei-parkinson-protein-entdeckt.html

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>