Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Sleuths Track Evolution Through The Ribosome

19.08.2008
A new study of the ribosome, the cell’s protein-building machinery, sheds light on the oldest branches of the evolutionary tree of life and suggests that differences in ribosomal structure among the three main branches of that tree are “molecular fossils” of the early evolution of protein synthesis.

The new analysis, from researchers at the University of Illinois, reveals that key regions of the ribosome differ between bacteria and archaea, microbes that the researchers say are genetically closer to eukarya, the domain of life that includes humans. The study appears this week in the Proceedings of the National Academy of Sciences.

The findings confirm and extend the early work of Illinois microbiology professor Carl Woese, an author on the study. Woese was the first to look for signs of evolution in the ribosome, where genetic information is translated into proteins. In the mid-1970s, he and his colleagues found consistent differences in the sequence of nucleotides that spell out the RNA of the ribosome in bacteria and archaea. These “molecular signatures” were so pronounced that Woese concluded that the archaea comprised a separate domain of life, distinct from bacteria and eukarya (animals, plants, fungi and protists). His classification system is now widely accepted.

“Carl Woese and his colleagues years ago established that protein translation had to be well developed when the evolution of modern cells started,” said Illinois chemistry professor Zaida Luthey-Schulten, an author on the new study. “So the evolution of cells and the evolution of translation are really linked to one another.”

The ribosome has two subunits, each made up of RNA and proteins. It interacts with a host of other molecules to guide the assembly of new proteins.

The researchers analyzed the sequence of nucleotides (the building blocks of RNA) and amino acids (the building blocks of proteins) that make up the ribosome.

They also looked at the three-dimensional structures of the ribosomal RNA and proteins and their proximity to each other. Graduate student Elijah Roberts, lead author on the study, developed computer programs to analyze the ribosomal sequences of different organisms. Whenever he found a ribosomal RNA or protein sequence that differed between bacteria and archaea, he screened the database to determine whether a sequence was unique to a given domain.

"To be a molecular signature a sequence has to be common to all members of a single domain of life, but not another,” Luthey-Schulten said.

Using the three-dimensional structures available for some bacterial and archaeal ribosomes, the researchers were also able to determine where in the ribosome these molecular signatures occurred.

“Until the 2000s, when these structures became available, you weren’t able to correlate where these signatures were with what was touching them in 3-D space,” Roberts said. “So nobody had ever done this sort of analysis before.”

The researchers found that 50 percent of the signatures distinguishing the archaeal and bacterial ribosomes is located in 5 percent of the ribosomal RNA sequence. Most of these molecular signatures occur in regions that are critical to ribosomal function.

They also found correlations between some ribosomal protein and RNA signatures, which they say is evidence that the ribosomal RNA and proteins co-evolved.

“The ramifications of this work are it gives you a much better way to probe how this universal machinery changes from one organism to another,” Luthey-Schulten said.

“In that the ribosome constitutes the core of the cellular translation mechanism, which is the sine qua non of gene expression, which is the essence of life as we know it, these findings constitute a major step in understanding the evolution of life, which is still a journey of a thousand miles,” Woese said.

The new findings also have implications for human health, Luthey-Schulten said. Because the signatures that differentiate bacteria from other organisms often occur in regions that are essential to ribosomal functioning, they will likely be targets for the development of new antibiotic drugs, she said.

Woese and Luthey-Schulten are affiliates of the Institute for Genomic Biology. Luthey-Schulten is also an affiliate of the Beckman Institute for Advanced Science and Technology and of the Center for Biophysics and Computational Biology.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>