Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular simulations confirm role of functional rotation in multidrug resistance

22.11.2010
A new molecular simulation technique developed by researchers at RIKEN and Kyoto University has confirmed for the first time the function of the transporter protein AcrB in E. coli multidrug resistance.

A new molecular simulation technique developed by researchers at RIKEN and Kyoto University has confirmed for the first time the function of the transporter protein AcrB in E. coli multidrug resistance. The result marks a key step in efforts to combat antibiotic resistance, demonstrating the power of computer simulation as an essential tool for basic research.

The capacity of certain bacteria to resist a wide variety of drugs and chemicals, known as “multidrug resistance”, has attracted widespread attention for the threat it poses to global health. One of the key factors that cause such resistance is the overexpression of efflux pumps, protein transporters in the cytoplasmic membrane that flush toxic substances out of the cell.

To clarify the role of efflux pumps in multidrug resistance, the researchers modeled the dynamics of AcrB, a transporter in E. coli which enables the bacteria to expel a wide range of target substances, including many antibiotics. Earlier research characterized AcrB as a prism-shaped homo-trimer of three protein subunits with conformations corresponding to three states in a transport cycle governing access to, binding and extrusion of target substances from the cell. Evidence for this so-called “functional rotation” hypothesis, however, was lacking.

Using a new coarse-grain molecular simulation technique, the research group has now produced this crucial evidence for the first time, and has pinpointed its driving force in proton-binding to AcrB’s drug-bound molecule. The findings also reconcile previous results, which in 2002 described AcrB as a symmetric structure and then in 2006 an asymmetric one, by suggesting that each study describes a different state of the transporter, whose conformation changes during drug dissociation.

Reported in the journal Nature Communications, this verification of the functional rotation mechanism marks a key step forward toward tackling key problems of multidrug resistance. It also hints at breakthroughs to come with the launch of RIKEN’s new Next-Generation Supercomputer (“K Computer”), set to be unveiled in 2012.

For more information, please contact:

Dr. Ryutaro Himeno
Integrated Simulation of Living Matter Group
RIKEN Computational Science Research Program
Tel: +81-(0)48-467-9321 / Fax: +81-(0)48-462-4634
Dr. Shoji Takada
Department of Biophysics, Graduate School of Science
Kyoto University
Tel: +81-(0)75-753-4220 / Fax: +81-(0)75-753-4222
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp
Reference:
Xin-Qiu Yao, Hiroo Kenzaki, Satoshi Murakami, and Shoji Takada. Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations. Nature Communications 1: 117 (2010)(8 pages). doi: 10.1038/ncomms1116 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>