Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New molecular robot can be programmed to follow instructions

10.03.2011
Scientists have developed a programmable "molecular robot" — a sub-microscopic molecular machine made of synthetic DNA that moves between track locations separated by 6nm.

The robot, a short strand of DNA, follows instructions programmed into a set of fuel molecules determining its destination, for example, to turn left or right at a junction in the track. The report, which represents a step toward futuristic nanomachines and nanofactories, appears in ACS's Nano Letters.

Andrew Turberfield and colleagues point out that other scientists have developed similar DNA-based robots, which move autonomously. Some of these use a biped design and move by alternately attaching and detaching themselves from anchor points along the DNA track, foot over foot, when fuel is added. Scientists would like to program DNA robots to autonomously walk in different directions to move in a programmable pattern, a key to harnessing their potential as cargo-carrying molecular machines.

The scientists describe an advance toward this goal — a robot that can be programmed to choose among different branches of a molecular track, rather than just move in a straight line. The key to this specialized movement is a so-called "fuel hairpin," a molecule that serves as both a chemical energy source for propelling the robot along the track and as a routing instruction. The instructions tell the robot which point is should move to next, allowing the selection between the left or right branches of a junction in the track, precisely controlling the route of the robot — which could potentially allow the transport of pharmaceuticals or other materials.

The authors acknowledged funding from the Engineering and Physical Sciences Research Council (EPSRC).

ARTICLE FOR IMMEDIATE RELEASE "A Programmable Molecular Robot"

CONTACT:
Professor A. J. Turberfield
University of Oxford
Department of Physics
Clarendon Laboratory
Parks Road
Oxford OX1 3PU
United Kingdom
Phone: (+44) 1865 272359
Fax: (+44) 1865 272400
Email: a.turberfield@physics.ox.ac.uk

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>