Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular muscle: Small parts of a big protein play key roles in building tissues

24.03.2011
Researchers hope pieces will help promote wound healing, shut down fibrosis and cancer

We all know the adage: A little bit of a good thing can go a long way. Now researchers in London are reporting that might also be true for a large protein associated with wound healing.

The team at the Kennedy Institute of Rheumatology at Imperial College reports in the Journal of Biological Chemistry that a protein generated when the body is under stress, such as in cases of physical trauma or disease, can affect how the protective housing that surrounds each cell develops. What's more, they say, tiny pieces of that protein may one day prove useful in preventing the spread of tumors or fibrosis.

At just 174 nanometers in diameter, tenascin-C is pretty big in the world of proteins, and it looks a lot like a spider with six legs, which are about 10 times longer than its body. Thanks to those long legs, tenascin-C can do real heavy lifting when it comes to wound healing.

"Tenascin-C plays many roles in the response to tissue injury, including, first of all, initiating an immune response and, later, ensuring proper tissue rebuilding," explains Kim Midwood, who oversaw the project.

When the injury alarm is rung, tenascin-C shows up on the scene and attaches to another protein, fibronectin. Together, tenascin-C and fibronectin help to construct the housing, or extracellular matrix, that surrounds each cell.

"The extracellular matrix is the home in which the cells of your body reside: It provides shelter and nutrients and also sends signals to the cell to tell it how to behave," says Midwood. "To make a finished tissue, the matrix must be carefully built."

Tenascin-C's job is a temporary one. When your hand is cut, for example, it appears at the edges of the wound and then goes away when scar tissue develops, says postdoctoral research associate Wing To: "Tenascin-C is thought to play a major role during the rebuilding phase of tissue injury by promoting regeneration of tissue that has been damaged."

If the extracellular matrix were a construction site, tenascin-C could be seen as the scaffold upon which the weaving of fibronectin threads, or fibrils, is done. "Tenascin-C has multiple arms, and we have shown that it has multiple binding sites for fibronectin," Midwood says. "In this way, it can bind to many fibronectin fibrils at once and help to form the whole tissue by linking the fibrils together. Then, when the repair is done, the scaffolding is taken down."

Midwood and To systematically determined where tenascin-C and fibronectin bind together. They also identified small parts of tenascin-C, known as domains, that can bind to only one fibronectin fibril apiece.

"The small domains act as caps of the scaffold. No more fibronectin fibrils can bind once these caps are in place," Midwood says. So, in essence, they found that certain pieces of tenascin-C determine when fibril building should stop once enough, but not too much, tissue is made.

The findings could be especially useful for creating therapies for conditions in which there is aberrant extracellular matrix deposition, such as in cancers, fibrotic conditions or chronic non-healing wounds, adds To.

In abnormal conditions, such as in the case of a tumor cell, "the home that's made of fibronectin helps it to survive, shelters it and provides signals that enable it to proliferate," says Midwood. "As the tumor thrives, the home keeps on growing, expanding to destroy the existing neighborhood."

Similarly, in fibrotic diseases, tissue rebuilding rages out of control – with too much fibronectin assembly – so that it takes over the whole affected organ, Midwood says.

"In the end, we found that tenascin-C has both stop and go functions cleverly concealed in the same molecule," Midwood says. "The large spiderlike protein may provide a scaffold for building, and the small domains of the protein block excess building. Small domains may be therapeutically useful in situations where too much fibronectin drives disease."

If certain domains can stop uncontrolled matrix deposition in conditions where there is an increase in unwanted extracellular matrix, such as in fibrosis, then they could be useful tools for controlling such diseases.

Meanwhile, To says, in conditions with high levels of tenascin-C degradation by enzymes, for example in nonhealing chronic wounds, that may expose active tenascin-C domains, "if we can stop the production of these domains during disease progression with specific inhibitors, maybe we could help ameliorate the condition.

Similarly we could try and get the cells to make tenascin-C variants that are not as easily broken down by enzymes to help facilitate wound healing."

Midwood and To's paper was named a "Paper of the Week" by the Journal of Biological Chemistry's editorial board, landing it in the top 1 percent of all papers published over the year in the journal. The project was funded by the charity Arthritis Research UK and by the Kennedy Institute Trustees, and the paper will appear in a forthcoming print issue of the journal.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit www.asbmb.org.

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>