Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular muscle: Small parts of a big protein play key roles in building tissues

24.03.2011
Researchers hope pieces will help promote wound healing, shut down fibrosis and cancer

We all know the adage: A little bit of a good thing can go a long way. Now researchers in London are reporting that might also be true for a large protein associated with wound healing.

The team at the Kennedy Institute of Rheumatology at Imperial College reports in the Journal of Biological Chemistry that a protein generated when the body is under stress, such as in cases of physical trauma or disease, can affect how the protective housing that surrounds each cell develops. What's more, they say, tiny pieces of that protein may one day prove useful in preventing the spread of tumors or fibrosis.

At just 174 nanometers in diameter, tenascin-C is pretty big in the world of proteins, and it looks a lot like a spider with six legs, which are about 10 times longer than its body. Thanks to those long legs, tenascin-C can do real heavy lifting when it comes to wound healing.

"Tenascin-C plays many roles in the response to tissue injury, including, first of all, initiating an immune response and, later, ensuring proper tissue rebuilding," explains Kim Midwood, who oversaw the project.

When the injury alarm is rung, tenascin-C shows up on the scene and attaches to another protein, fibronectin. Together, tenascin-C and fibronectin help to construct the housing, or extracellular matrix, that surrounds each cell.

"The extracellular matrix is the home in which the cells of your body reside: It provides shelter and nutrients and also sends signals to the cell to tell it how to behave," says Midwood. "To make a finished tissue, the matrix must be carefully built."

Tenascin-C's job is a temporary one. When your hand is cut, for example, it appears at the edges of the wound and then goes away when scar tissue develops, says postdoctoral research associate Wing To: "Tenascin-C is thought to play a major role during the rebuilding phase of tissue injury by promoting regeneration of tissue that has been damaged."

If the extracellular matrix were a construction site, tenascin-C could be seen as the scaffold upon which the weaving of fibronectin threads, or fibrils, is done. "Tenascin-C has multiple arms, and we have shown that it has multiple binding sites for fibronectin," Midwood says. "In this way, it can bind to many fibronectin fibrils at once and help to form the whole tissue by linking the fibrils together. Then, when the repair is done, the scaffolding is taken down."

Midwood and To systematically determined where tenascin-C and fibronectin bind together. They also identified small parts of tenascin-C, known as domains, that can bind to only one fibronectin fibril apiece.

"The small domains act as caps of the scaffold. No more fibronectin fibrils can bind once these caps are in place," Midwood says. So, in essence, they found that certain pieces of tenascin-C determine when fibril building should stop once enough, but not too much, tissue is made.

The findings could be especially useful for creating therapies for conditions in which there is aberrant extracellular matrix deposition, such as in cancers, fibrotic conditions or chronic non-healing wounds, adds To.

In abnormal conditions, such as in the case of a tumor cell, "the home that's made of fibronectin helps it to survive, shelters it and provides signals that enable it to proliferate," says Midwood. "As the tumor thrives, the home keeps on growing, expanding to destroy the existing neighborhood."

Similarly, in fibrotic diseases, tissue rebuilding rages out of control – with too much fibronectin assembly – so that it takes over the whole affected organ, Midwood says.

"In the end, we found that tenascin-C has both stop and go functions cleverly concealed in the same molecule," Midwood says. "The large spiderlike protein may provide a scaffold for building, and the small domains of the protein block excess building. Small domains may be therapeutically useful in situations where too much fibronectin drives disease."

If certain domains can stop uncontrolled matrix deposition in conditions where there is an increase in unwanted extracellular matrix, such as in fibrosis, then they could be useful tools for controlling such diseases.

Meanwhile, To says, in conditions with high levels of tenascin-C degradation by enzymes, for example in nonhealing chronic wounds, that may expose active tenascin-C domains, "if we can stop the production of these domains during disease progression with specific inhibitors, maybe we could help ameliorate the condition.

Similarly we could try and get the cells to make tenascin-C variants that are not as easily broken down by enzymes to help facilitate wound healing."

Midwood and To's paper was named a "Paper of the Week" by the Journal of Biological Chemistry's editorial board, landing it in the top 1 percent of all papers published over the year in the journal. The project was funded by the charity Arthritis Research UK and by the Kennedy Institute Trustees, and the paper will appear in a forthcoming print issue of the journal.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit www.asbmb.org.

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>