Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular middle managers make more decisions than bosses

30.03.2010
Organisms are structured at the molecular level in ways similar to social hierarchies. In some, master genetic regulators call most of the shots, and in others most of life's activities are carried out by more egalitarian collaborations.

Knowing these organizational rules will help us understand biological systems and our social interactions, argues Mark Gerstein, A L Williams professor of biomedical informatics, molecular biophysics and biochemistry, and computer science. He is the senior author of a paper on the subject published online the week of March 29 in the Proceedings of the National Academy of Sciences.

Gerstein and postdoctoral associate Nitin Bhardwaj analyzed regulatory networks of five diverse species, from E. coli to human, and rearranged those systems into hierarchies with a number of broad levels, including "master regulators," "middle managers" and "workhorses." In most organisms, master regulators control the activity of middle managers, which in turn govern suites of workhorse genes that carry out instructions for making proteins.

As a general rule, the more complex the organism, the less autocratic and more democratic the biological networks appear to be, researchers report. In both biological systems and corporate structures, interactions between middle managers are often more critical to functioning than actions by bosses. "If my department chair takes another job, the emphasis of my lab might change, but it will survive," Gerstein said. "But if my systems administrator leaves, my lab dies."

In simpler organisms such as E. coli, there tends to be a simple chain of command in which regulatory genes act like generals, and subordinate molecules "downstream" follow a single superior's instructions. Gerstein calls these systems "autocratic." But in more complex organisms, most of these subordinate genes co-regulate biological activity, in a sense sharing information and collaborating in governance. Gerstein labels these systems "democratic." If they share some qualities of both they are deemed "intermediate."

The interactions in more democratic hierarchies lead to mutually supporting partnerships between regulators than in autocratic systems, where if one gene is inactivated, the system tends to collapse. This is why Gerstein and colleagues in earlier work found that when they knocked out a master regulating gene in a complex organism, the "effects were more global, but softer" than when a key middle manager gene in a simpler life form was inactivated, which led to the death of the organism.

"Regulators in more complex species demonstrate a highly collaborative nature. We believe that these are due to the size and complexity of these genomes," Gerstein said. For example, about 250 master regulators in yeast have 6000 potential targets, a ratio of about one to 25. In humans, 20,000 targets are regulated by about 2,000 genes, a ratio of one to 10.

The work was funded by the National Institutes of Health.

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>