Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular middle managers make more decisions than bosses

30.03.2010
Organisms are structured at the molecular level in ways similar to social hierarchies. In some, master genetic regulators call most of the shots, and in others most of life's activities are carried out by more egalitarian collaborations.

Knowing these organizational rules will help us understand biological systems and our social interactions, argues Mark Gerstein, A L Williams professor of biomedical informatics, molecular biophysics and biochemistry, and computer science. He is the senior author of a paper on the subject published online the week of March 29 in the Proceedings of the National Academy of Sciences.

Gerstein and postdoctoral associate Nitin Bhardwaj analyzed regulatory networks of five diverse species, from E. coli to human, and rearranged those systems into hierarchies with a number of broad levels, including "master regulators," "middle managers" and "workhorses." In most organisms, master regulators control the activity of middle managers, which in turn govern suites of workhorse genes that carry out instructions for making proteins.

As a general rule, the more complex the organism, the less autocratic and more democratic the biological networks appear to be, researchers report. In both biological systems and corporate structures, interactions between middle managers are often more critical to functioning than actions by bosses. "If my department chair takes another job, the emphasis of my lab might change, but it will survive," Gerstein said. "But if my systems administrator leaves, my lab dies."

In simpler organisms such as E. coli, there tends to be a simple chain of command in which regulatory genes act like generals, and subordinate molecules "downstream" follow a single superior's instructions. Gerstein calls these systems "autocratic." But in more complex organisms, most of these subordinate genes co-regulate biological activity, in a sense sharing information and collaborating in governance. Gerstein labels these systems "democratic." If they share some qualities of both they are deemed "intermediate."

The interactions in more democratic hierarchies lead to mutually supporting partnerships between regulators than in autocratic systems, where if one gene is inactivated, the system tends to collapse. This is why Gerstein and colleagues in earlier work found that when they knocked out a master regulating gene in a complex organism, the "effects were more global, but softer" than when a key middle manager gene in a simpler life form was inactivated, which led to the death of the organism.

"Regulators in more complex species demonstrate a highly collaborative nature. We believe that these are due to the size and complexity of these genomes," Gerstein said. For example, about 250 master regulators in yeast have 6000 potential targets, a ratio of about one to 25. In humans, 20,000 targets are regulated by about 2,000 genes, a ratio of one to 10.

The work was funded by the National Institutes of Health.

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>