Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Messages from the Antennae

15.04.2011
Scientists assemble genes involved in regulating olfaction in the antennae of a moth

Insects use their antennae for smelling and thus for locating resources in their environment. In an online first article published now, Max Planck researchers present the first complete analysis of genes involved in antennal olfaction of the tobacco hornworm Manduca sexta.


With the help of its antennae this night-active tobacco hornworm (Manduca sexta) has been able to locate wild tobacco flowers by smell and is now enjoying the nectar. MPI for Chemical Ecology/Danny Kessler


Tissue section of a male Manduca sexta antenna. Red and green areas are evidence for transcripts of two different odorant receptors (scale: 50 micrometers). MPI for Chemical Ecology/Christopher König

Approximately 70 different receptors expressed in some 100 000 neurons allow these moths to detect a large number of odors and to perform relevant odor-guided behaviors. This is the first more or less complete antennal transcriptome characterized in a non-model insect (PNAS Online Early Edition, April 2011, DOI: 10.1073/pnas.1017963108).

Insects have a highly sensitive sense of smell. Extremely low concentrations of odor molecules in the air are sufficient to be detected by receptor neurons on their antennae. Specific proteins, so-called receptor proteins, expressed in these neurons recognize the odors. The odor molecules bind to the receptors and produce chemical and electrical signals that are processed in the insect brain and eventually affect the insect’s behavior.

Apart from the receptors, further proteins involved in olfaction, including enzymes and chemosensory proteins, come into play. Based on these molecular principles, all insects follow their innate and elementary survival formula: finding food, recognizing mates, and − in case of females − identifying adequate oviposition sites that guarantee nutritious and easily digestible food for their offspring.

Moths (Lepidotera) are popular research objects in addition to fruit flies. The genome of the silkworm Bombyx mori has been fully sequenced; however, this insect has been domesticated by humans for thousands of years, therefore its native conspecifics cannot be found anymore. On the other hand, the “habits” of the tobacco hornworm Manduca sexta, a moth species native to North America, have been the subject of intense physiological investigations to study the insect olfactory system, and recently also because its host plant, wild tobacco Nicotiana attenuata, has advanced to an important model plant in ecological research.

Genetic analysis of the Manduca sexta antennae closes a gap in the search after the insect’s odor-directed behavior: The release of stress-induced odor molecules by tobacco plants is well studied, as is the pollination of the flowers by the moths. “But how does the plant odor – metaphorically speaking − end up in the insect’s brain?” asks Bill Hansson, director of the Department of Evolutionary Neuroethology founded in 2006 at the Max Planck Institute.

The scientists identified the antennal transcriptome as an important basis for studying olfactory function of the insect and sequenced active genes in the antennae completely. Additionally, they determined the amount of individual messenger RNAs (mRNAs) that belong to each gene. Sequence information which involved more than 66 million nucleotides was analyzed. Basically, the results can be summarized as follows: i.) Manduca sexta has 18 specific odorant binding proteins (OBPs) and 21 chemosensory proteins (CSPs). ii.) Manduca males possess 68 different odorant receptors, each expressed in a specific type of neuron coupled to a corresponding glomerulus in the brain, whereas females have 70 of these “response units”. Most of the receptors could be identified in the course of these studies. iii.) 69% of the transcripts could not be annotated to a specific gene function: their role in the antennae is so far unknown. Presumably there are many more neural mechanisms of stimulus processing in the antennae that are yet to be elucidated. Some mRNAs imply that there is intense enzymatic activity, esterases for instance; there is also a larger amount of transcripts that regulate gene expression, indicating that the antenna can adapt to new situations by gene regulation. iv.) Antennal genetics do not seem particularly complex: For comparison: there are almost twice as many active genes in the larval midgut as in the antennae of an adult moth. Only 348 genes are exclusively expressed in males; females, after all, claim 729 genes as their own. This may be due to their life sustaining formula to lay their fertilized eggs in ideal places, such as wild tobacco leaves, where young larvae can feed. [JWK, AO]

Original Publication:
Ewald Grosse-Wilde, Linda S. Kuebler, Sascha Bucks, Heiko Vogel, Dieter Wicher, Bill S. Hansson: Antennal transcriptome of Manduca sexta.

Proceedings of the National Academy of Sciences USA, Early Edition, April 2011, DOI: 10.1073/pnas.1017963108

Further Information:
Prof. Dr. Bill S. Hansson, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena. Tel.: +49 (0)3641- 57 1400; hansson@ice.mpg.de
Picture Requests:
Downloads: http://www.ice.mpg.de/ext/735.html
or contact Angela Overmeyer, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany. Tel.: +49 (0)3641- 57 2110; overmeyer@ice.mpg.de
Further Links:
Movie and additional pictures can be found on the website http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/735.html
http://www.ice.mpg.de/ext/735.html

More articles from Life Sciences:

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

nachricht Snap, Digest, Respire
20.01.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>