Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Messages from the Antennae

15.04.2011
Scientists assemble genes involved in regulating olfaction in the antennae of a moth

Insects use their antennae for smelling and thus for locating resources in their environment. In an online first article published now, Max Planck researchers present the first complete analysis of genes involved in antennal olfaction of the tobacco hornworm Manduca sexta.


With the help of its antennae this night-active tobacco hornworm (Manduca sexta) has been able to locate wild tobacco flowers by smell and is now enjoying the nectar. MPI for Chemical Ecology/Danny Kessler


Tissue section of a male Manduca sexta antenna. Red and green areas are evidence for transcripts of two different odorant receptors (scale: 50 micrometers). MPI for Chemical Ecology/Christopher König

Approximately 70 different receptors expressed in some 100 000 neurons allow these moths to detect a large number of odors and to perform relevant odor-guided behaviors. This is the first more or less complete antennal transcriptome characterized in a non-model insect (PNAS Online Early Edition, April 2011, DOI: 10.1073/pnas.1017963108).

Insects have a highly sensitive sense of smell. Extremely low concentrations of odor molecules in the air are sufficient to be detected by receptor neurons on their antennae. Specific proteins, so-called receptor proteins, expressed in these neurons recognize the odors. The odor molecules bind to the receptors and produce chemical and electrical signals that are processed in the insect brain and eventually affect the insect’s behavior.

Apart from the receptors, further proteins involved in olfaction, including enzymes and chemosensory proteins, come into play. Based on these molecular principles, all insects follow their innate and elementary survival formula: finding food, recognizing mates, and − in case of females − identifying adequate oviposition sites that guarantee nutritious and easily digestible food for their offspring.

Moths (Lepidotera) are popular research objects in addition to fruit flies. The genome of the silkworm Bombyx mori has been fully sequenced; however, this insect has been domesticated by humans for thousands of years, therefore its native conspecifics cannot be found anymore. On the other hand, the “habits” of the tobacco hornworm Manduca sexta, a moth species native to North America, have been the subject of intense physiological investigations to study the insect olfactory system, and recently also because its host plant, wild tobacco Nicotiana attenuata, has advanced to an important model plant in ecological research.

Genetic analysis of the Manduca sexta antennae closes a gap in the search after the insect’s odor-directed behavior: The release of stress-induced odor molecules by tobacco plants is well studied, as is the pollination of the flowers by the moths. “But how does the plant odor – metaphorically speaking − end up in the insect’s brain?” asks Bill Hansson, director of the Department of Evolutionary Neuroethology founded in 2006 at the Max Planck Institute.

The scientists identified the antennal transcriptome as an important basis for studying olfactory function of the insect and sequenced active genes in the antennae completely. Additionally, they determined the amount of individual messenger RNAs (mRNAs) that belong to each gene. Sequence information which involved more than 66 million nucleotides was analyzed. Basically, the results can be summarized as follows: i.) Manduca sexta has 18 specific odorant binding proteins (OBPs) and 21 chemosensory proteins (CSPs). ii.) Manduca males possess 68 different odorant receptors, each expressed in a specific type of neuron coupled to a corresponding glomerulus in the brain, whereas females have 70 of these “response units”. Most of the receptors could be identified in the course of these studies. iii.) 69% of the transcripts could not be annotated to a specific gene function: their role in the antennae is so far unknown. Presumably there are many more neural mechanisms of stimulus processing in the antennae that are yet to be elucidated. Some mRNAs imply that there is intense enzymatic activity, esterases for instance; there is also a larger amount of transcripts that regulate gene expression, indicating that the antenna can adapt to new situations by gene regulation. iv.) Antennal genetics do not seem particularly complex: For comparison: there are almost twice as many active genes in the larval midgut as in the antennae of an adult moth. Only 348 genes are exclusively expressed in males; females, after all, claim 729 genes as their own. This may be due to their life sustaining formula to lay their fertilized eggs in ideal places, such as wild tobacco leaves, where young larvae can feed. [JWK, AO]

Original Publication:
Ewald Grosse-Wilde, Linda S. Kuebler, Sascha Bucks, Heiko Vogel, Dieter Wicher, Bill S. Hansson: Antennal transcriptome of Manduca sexta.

Proceedings of the National Academy of Sciences USA, Early Edition, April 2011, DOI: 10.1073/pnas.1017963108

Further Information:
Prof. Dr. Bill S. Hansson, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena. Tel.: +49 (0)3641- 57 1400; hansson@ice.mpg.de
Picture Requests:
Downloads: http://www.ice.mpg.de/ext/735.html
or contact Angela Overmeyer, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany. Tel.: +49 (0)3641- 57 2110; overmeyer@ice.mpg.de
Further Links:
Movie and additional pictures can be found on the website http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/735.html
http://www.ice.mpg.de/ext/735.html

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>