Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Messages from the Antennae

15.04.2011
Scientists assemble genes involved in regulating olfaction in the antennae of a moth

Insects use their antennae for smelling and thus for locating resources in their environment. In an online first article published now, Max Planck researchers present the first complete analysis of genes involved in antennal olfaction of the tobacco hornworm Manduca sexta.


With the help of its antennae this night-active tobacco hornworm (Manduca sexta) has been able to locate wild tobacco flowers by smell and is now enjoying the nectar. MPI for Chemical Ecology/Danny Kessler


Tissue section of a male Manduca sexta antenna. Red and green areas are evidence for transcripts of two different odorant receptors (scale: 50 micrometers). MPI for Chemical Ecology/Christopher König

Approximately 70 different receptors expressed in some 100 000 neurons allow these moths to detect a large number of odors and to perform relevant odor-guided behaviors. This is the first more or less complete antennal transcriptome characterized in a non-model insect (PNAS Online Early Edition, April 2011, DOI: 10.1073/pnas.1017963108).

Insects have a highly sensitive sense of smell. Extremely low concentrations of odor molecules in the air are sufficient to be detected by receptor neurons on their antennae. Specific proteins, so-called receptor proteins, expressed in these neurons recognize the odors. The odor molecules bind to the receptors and produce chemical and electrical signals that are processed in the insect brain and eventually affect the insect’s behavior.

Apart from the receptors, further proteins involved in olfaction, including enzymes and chemosensory proteins, come into play. Based on these molecular principles, all insects follow their innate and elementary survival formula: finding food, recognizing mates, and − in case of females − identifying adequate oviposition sites that guarantee nutritious and easily digestible food for their offspring.

Moths (Lepidotera) are popular research objects in addition to fruit flies. The genome of the silkworm Bombyx mori has been fully sequenced; however, this insect has been domesticated by humans for thousands of years, therefore its native conspecifics cannot be found anymore. On the other hand, the “habits” of the tobacco hornworm Manduca sexta, a moth species native to North America, have been the subject of intense physiological investigations to study the insect olfactory system, and recently also because its host plant, wild tobacco Nicotiana attenuata, has advanced to an important model plant in ecological research.

Genetic analysis of the Manduca sexta antennae closes a gap in the search after the insect’s odor-directed behavior: The release of stress-induced odor molecules by tobacco plants is well studied, as is the pollination of the flowers by the moths. “But how does the plant odor – metaphorically speaking − end up in the insect’s brain?” asks Bill Hansson, director of the Department of Evolutionary Neuroethology founded in 2006 at the Max Planck Institute.

The scientists identified the antennal transcriptome as an important basis for studying olfactory function of the insect and sequenced active genes in the antennae completely. Additionally, they determined the amount of individual messenger RNAs (mRNAs) that belong to each gene. Sequence information which involved more than 66 million nucleotides was analyzed. Basically, the results can be summarized as follows: i.) Manduca sexta has 18 specific odorant binding proteins (OBPs) and 21 chemosensory proteins (CSPs). ii.) Manduca males possess 68 different odorant receptors, each expressed in a specific type of neuron coupled to a corresponding glomerulus in the brain, whereas females have 70 of these “response units”. Most of the receptors could be identified in the course of these studies. iii.) 69% of the transcripts could not be annotated to a specific gene function: their role in the antennae is so far unknown. Presumably there are many more neural mechanisms of stimulus processing in the antennae that are yet to be elucidated. Some mRNAs imply that there is intense enzymatic activity, esterases for instance; there is also a larger amount of transcripts that regulate gene expression, indicating that the antenna can adapt to new situations by gene regulation. iv.) Antennal genetics do not seem particularly complex: For comparison: there are almost twice as many active genes in the larval midgut as in the antennae of an adult moth. Only 348 genes are exclusively expressed in males; females, after all, claim 729 genes as their own. This may be due to their life sustaining formula to lay their fertilized eggs in ideal places, such as wild tobacco leaves, where young larvae can feed. [JWK, AO]

Original Publication:
Ewald Grosse-Wilde, Linda S. Kuebler, Sascha Bucks, Heiko Vogel, Dieter Wicher, Bill S. Hansson: Antennal transcriptome of Manduca sexta.

Proceedings of the National Academy of Sciences USA, Early Edition, April 2011, DOI: 10.1073/pnas.1017963108

Further Information:
Prof. Dr. Bill S. Hansson, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena. Tel.: +49 (0)3641- 57 1400; hansson@ice.mpg.de
Picture Requests:
Downloads: http://www.ice.mpg.de/ext/735.html
or contact Angela Overmeyer, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany. Tel.: +49 (0)3641- 57 2110; overmeyer@ice.mpg.de
Further Links:
Movie and additional pictures can be found on the website http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/735.html
http://www.ice.mpg.de/ext/735.html

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>