Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular Mechanism responsible for a neurodegenerative disease discovered


Scientists from Bern have discovered a mechanism which is responsible for the degeneration of Purkinje cells in the cerebellum in a neurodegenerative disease called Spinocerebellar ataxia type 1. The results of their study open up new avenues for the future treatment of cerebellum associated degenerative disorders.

Damage, degeneration or loss of neurons in the region of the brain that controls muscle coordination (cerebellum), results in ataxia. The symptoms include loss of voluntary coordination of muscle movements and the appearance of gait abnormality, loss of balance and speech problems.

Left: A healthy Purkinje cell displaying an elaborate dendritic arbor covered in spines. Right: A Purkinje cell afflicted with ataxia, showing classical hallmarks of degeneration

Institute of Cell Biology, University of Bern

Cerebellar ataxias are progressive degenerative disorders which occur in adults either sporadically or can be inherited from parents. Unfortunately, the large majority of cerebellar ataxia cases are sporadic in nature and the causative mechanism for the development of ataxia remains largely unknown, which eventually hinders the development of therapy and negatively influences the quality of patient’s life.

However, both the sporadic and inherited cases of cerebellar ataxia exhibit common pathophysiological characteristics such as the specific degeneration of the main cerebellar neurons; the Purkinje cells. Therefore, the team of Smita Saxena from the Institute of Cell Biology at the University of Bern set out to understand the potential mechanism involved in the development of ataxia and degeneration of Purkinje cells in Spinocerebellar ataxia type 1 (SCA1), a rare, incurable, inheritable neurodegenerative disease that can be modeled in mice.

Together with first author Céline Ruegsegger, a protein based screening of Purkinje cells was performed to identify changes that occur in these neurons at the time of ataxia appearance. The team discovered wide spread alterations in proteins which function at the synapse and identified a synaptic protein Homer-3 that is mainly present in Purkinje cell synapses to be reduced.

Further, they found that Homer-3 decrease was related to the alteration in an important signaling pathway; mTORC1. This signaling pathway was responsible for regulating the expression of synaptic proteins such as Homer-3. Saxena and her team have discovered a cellular mechanism in the cerebellum of SCA1 mice that specifically targets the degeneration of Purkinje cells and the findings present a promising future therapeutic target. The study was published in the scientific journal «Neuron».

The team investigated why mTORC1 signaling was altered in the cerebellar Purkinje cells and not in other regions of the brain. By measuring activation state of Purkinje cells, they found that impaired mTORC1 signaling was due to defects in Purkinje cell associated neuronal circuitry mainly involving the climbing fibers.

“In this context, the identification of circuit related alterations which play an important role in determining pathological alterations in Purkinje cells is important in understanding how the disease mechanism works and targets vulnerable components in defined neurons; in this case Purkinje cells,” says Saxena.

Reinstating Homer-3 expression can ameliorate symptoms and delay pathology
After the identification of Homer-3 as being reduced early in the disease course, Céline Ruegsegger and Saxena tried to establish its causal role in the development of disease. By using a gene therapy approach they reintroduced Homer-3 expression in Purkinje cells of SCA1 mice. This slowed down the development of ataxia, ameliorated symptoms associated with loss of motor coordination and balance and restored Purkinje cell functionality.

“Interestingly, it has been known for some time that alterations in mTORC1 signaling in the cerebellum during development is associated with autistic behavior and intellectual disorder,” said Saxena. “In our study, the novel finding is that similar signaling pathways can also be involved in adult cerebellar associated degenerative disorders such as SCA1. This is an important step forward in understanding the process involved in developmental and degenerative disorders and identifies a potentially new therapeutic target for the future.”

Publication details:
Céline Ruegsegger, David M. Stucki, Silvio Steiner, Nico Angliker, Julika Radecke, Eva Keller, Benoît Zuber, Markus A. Rüegg and Smita Saxena
Impaired mTORC1-dependent expression of Homer-3 influences SCA1 pathophysiology. Neuron, 2016 (in press)

Weitere Informationen:

Nathalie Matter | Universität Bern

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>