Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular match-making: decoding ligand-receptor biochemistry

17.07.2015

Drugs like antihistamines or beta-blockers in human bodies bind to G-protein coupled receptors. Tiny little molecules that exist on the surface of our cells relay a signal from the outside to the inside of the cell, which finally evokes a reaction within. Humans have several hundred different receptors, many of which are vital for the functioning of their bodies.

Dr. Gáspár Jékely, independent research group leader at the Max Planck Institute for Developmental Biology in Tübingen, describes a new strategy to rapidly identify currently unknown receptors in the magazine Cell Report. Thereby his research group also sheds light on the evolutionary history of this widespread family of receptors.


Marine ragworm Platynereis dumerilii

Tom Pingel

With several hundred G-protein coupled receptors, so-called GPCRs, and many thousand potential ligands to test, it is difficult and time-consuming to find the right receptor-ligand combinations. The study focused on 87 Platynereis GPCRs and 126 different ligands, belonging to a specific class - the neuropeptides. With such large numbers of molecules, there were over 10,000 combinations to test.

“We had to come up with a clever strategy to get the work done in about a year rather than five years or more”, says Philipp Bauknecht, the PhD student who carried out the experiments. Much like in speed dating, every receptor should “meet” every neuropeptide in a very short amount of time. This was achieved by testing complex neuropeptide mixtures on each GPCR. A fluorescent protein would then report by emitting green light if there was a “match” between the GPCR and any of the ligands.

The researchers then continued only with the GPCRs that showed evidence of activation and tested combinations of mixtures containing only subsets of the neuropeptides. Combining the results from different mixtures allowed them to find the correct ligands for the GPCRs.

The GPCRs for which ligands had been identified were then used for evolutionary analysis. The researchers found related GPCRs from animals such as mollusks and insects, but also rats, mice and humans. For some of the GPCR families that were identified, this was the first example of what kind of ligand could activate them.

The team could show that some of the GPCR-ligand pairs are conserved across mammals, fish, insects and worms. These GPCR-ligand pairs were thus already present in the last common ancestor of ourselves and the ragworm Platynereis, an animal that lived about 550 million years ago.

A particularly interesting finding was the identification of a ligand for the invertebrate thyrotropin-releasing hormone receptor. As its name implies, the ligand for this receptor is the peptide thyrotropin-releasing hormone (TRH). This peptide occurs in vertebrates, where it functions in the control of metabolism. Invertebrates, however, were previously thought to lack this peptide while still having the receptor.

Through this study, the research group has identified a ligand for the invertebrate TRH receptor - a short neuropeptide that indeed seems to be related to vertebrate TRH. It was previously not recognized because it is so short and the few amino acids it is made up of changed during evolution. "Without having the receptor-ligand pair, we could not have solved this riddle", says Dr. Gáspár Jékely. The receptor is much longer, and conserved enough to show the relationships between vertebrate and invertebrate versions.

This new collection of GPCR-ligand pairs in the worm Platynereis will help other researchers in the field to identify similar pairs in other animals more easily. Furthermore, the strategy of using complex ligand mixtures is easily transferable to other species. Similar screens performed in other species could broaden our perspective of GPCR evolution even more.

Original Publication:
Philipp Bauknecht and Gáspár Jékely
Large-scale combinatorial deorphanization of Platynereis neuropeptide GPCRs, Cell Reports 2015
DOI:http://dx.doi.org/10.1016/j.celrep.2015.06.052

Weitere Informationen:

http://dx.doi.org/10.1016/j.celrep.2015.06.052

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie
Further information:
http://eb.mpg.de

Further reports about: GPCR GPCRs Max-Planck-Institut Molecular Platynereis animals hormone ligands receptor species vertebrate

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>