Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular marker identifies normal stem cells as intestinal tumor source

19.12.2008
St. Jude scientists show for the first time that normal stem cells can act as the source of tumors in mature solid tissues

Scientists at St. Jude Children's Research Hospital have answered a central question in cancer biology: whether normal stem cells can give rise to tumors. Stem cells are immature cells that can renew themselves and give rise to mature differentiated cells that compose the range of body tissues. In recent years, researchers have developed evidence that cancers may arise from mutant forms of stem cells.

Like a brand-name product instantly identifiable by its trademarked logo, normal and cancerous stem cells display on their surface characteristic proteins, including Prominin1 or CD133. A key question in cancer biology has been whether these so-called cancer stem cells arise from normal stem cells or more mature cancer cells that somehow reacquire the characteristics of stem cells.

In the advanced, online issue of the journal Nature, St. Jude investigators show that Prominin1 marks normal intestinal stem cells and that these cells, when mutated, give rise to intestinal tumors. The finding could also aid in identifying the source of cancer stem cells in the lung, kidney, brain, pancreas and other tissues.

"The idea that cancers might arise from mutant stem cells is an attractive one; but until now the link between normal and cancer stem cells in solid tissues like the intestine was not known," said Richard Gilbertson, M.D., Ph.D., associate member of the St. Jude Developmental Neurobiology and Oncology departments and the paper's senior author. "Our work provides the first direct link between normal solid tissue stem cells and cancer. The fact that this occurs in the intestine is particularly interesting since human intestinal tumors contain Prominin1-expressing cancer stem cells."

In addition to providing insights into the origins of cancer, the work might help scientists identify more effective treatments. "Normal stem cells are designed to withstand environmental insults," Gilbertson said. "Thus cancer stem cells might use these same mechanisms to resist chemotherapy and radiotherapy. Remnant cancer stem cells might therefore cause tumors to relapse and re-grow following treatment. If we could kill these cancer stem cells, we might be able to prevent relapse. Understanding the link between normal and cancerous stem cells should help us target the latter while preserving the former."

Working with mice, the researchers inserted a genetic switch that enabled them to selectively turn on a colored tracer molecule only in cells that were expressing, or had expressed, Prominin1. These tracer experiments revealed that Prominin1 cells generate the covering of the entire small intestine and are therefore the stem cell of this tissue.

Next, the researchers switched on cancer-producing machinery in the Prominin1 intestinal stem cells and used a fluorescent tracer to follow the offspring of these cells. Those studies revealed that the stem cells stopped making normal intestine and made tumors instead. "We saw a dramatic change in these laboratory models," Gilbertson said. "The tumorous tissue ultimately replaced the entire normal intestine. In terms of clinical importance, now that we have isolated both the normal, parental stem cells and the cancer stem cells, we can begin screening compounds that will affect the malignant stem cell but not the normal stem cell."

More broadly, Prominin1 might prove to be a useful marker to trace cancer stem cells in the kidney, brain, pancreas and other tissues. The researchers are also exploring the use of stem cell markers in diseases other than cancer. "As we develop these kinds of characteristic markers for stem cells, we might be able to use them to isolate stem cells capable of regenerating healthy tissue in patients who suffer diabetes or other diseases due to organ failure," Gilbertson said.

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>