Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular learning machines under the microscope


Neurotransmitters play an important role in the communication of nerve cells. Major details of the processes involved have been unclear until recently. Scientists of the University of Würzburg have now shed light on these processes by using a new technique.

All human thoughts, feelings and actions are based on the fact that nerve cells communicate with each other. They pass impulses via synapses, intensify, weaken or block them. Like a ferry crossing a river, chemical messengers, the so-called neurotransmitters, pass from one side of the synapse to the other crossing a gap that is less than thousands of millimetres wide to dock to special synaptic receptors on the adjacent neuron.

Organisation of the Bruchpilot protein at active zones. High-resolution dSTORM imaging (right) shows details that cannot be visualised using conventional optical microscopy (left). Scale bars 500 nm. Photo: team Sauer / team Kittel

The molecular make-up of synaptic structures responsible for passing impulses is not fully known until today. Using a special imaging technique, scientists from the University of Würzburg have now succeeded in making processes at the nanoscale visible. They present their results in the latest issue of Nature Communications.

Molecular machines in active zones

"The release of neurotransmitters in the so-called 'active zone' - a highly specialised sub-cellular region of the presynaptic neuron - is responsible for the information transfer at chemical synapses," explains Dr. Robert Kittel, who is the head of an Emmy Noether Group at the Department of Physiology of the University of Würzburg which focuses on the molecular mechanisms of synapses.

Since 2009, he has studied the fruit fly Drosophila melanogaster to learn more about the active zone's physiology. He is particularly interested in the question of how structural changes of this active zone contribute to synaptic plasticity, thus enabling learning, for instance.

As Kittel puts it, "complex molecular machines" are at work in an active zone which convey the "extremely high spatial and temporal precisions of synaptic signal transduction". The neurotransmitter release is preceded by multi-stage processes in the active zone in the course of which the neutron provides the neurotransmitters in so-called vesicles.

An exact image of the spatial distribution of the active zone's molecular constituents and thus information regarding the organisational principles has been the goal of Kittel's research for a long time, because it is these properties which are decisive for the function of the active zone. Collaborating with fellow Würzburg scientists, he has now moved closer to this goal.

Super-resolution optical microscopy

The breakthrough came with the cooperation with Professor Markus Sauer, head of the Department of Biotechnology and Biophysics at University of Würzburg's Biocenter. Together with his team, Sauer developed a method capable of delivering the desired images. Its name: dSTORM – direct Stochastic Optical Reconstruction Microscopy. A special form of high-resolution fluorescence microscopy, it enables imaging cellular structures and molecules with a ten- to hundred-fold increase in resolution compared to standard optical microscopy. The scale of the imaged objects is in the range of a few nanometres – that is, millionths of millimetres.

Electrophysiological measurements at the neurons of Drosophila combined with the dSTORM images then delivered the information the scientist had been looking for: the relationship between the spatial arrangement of special proteins at nanoscale and the functional properties of the active zone.

In fact, this enabled the researchers to count the copies of the so-called "Bruchpilot" protein in the active zones and thereby work out quantitative structure-function relationships. "The analysis of the spatial organisation of molecules provides us information regarding the functional mechanisms of the active zone and helps us shed light on the basic mechanisms of brain function," is how the researchers interpret the result.

Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. Nadine Ehmann, Sebastian van de Linde, Amit Alon, Dmitrij Ljaschenko, Xi Zhen Keung, Thorge Holm, Annika Rings, Aaron DiAntonio, Stefan Hallermann, Uri Ashery, Manfred Heckmann, Markus Sauer & Robert J. Kittel, Nature Communications. DOI: 10.1038/ncomms5650


Dr. Robert Kittel, Telephone: +49 931 31-86046,
Prof. Dr. Markus Sauer, Telephone: +49 931-88687,

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:

More articles from Life Sciences:

nachricht Tissue-engineered colon from human cells develop different types of neurons
02.10.2015 | Children's Hospital Los Angeles

nachricht Big eyes! – MDC Researchers Identify Cause of Inherited Form of Extreme Nearsightedness
02.10.2015 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...

Im Focus: LZH presents additive manufacturing at the LABVOLUTION

The Laser Zentrum Hannover e.V. (LZH) will present how laser-based technologies can contribute to the laboratory of the future at the LABVOLUTION in Hannover in Hall 9, Stand E67/09, from October 6th to 8th, 2015. As a part of the model lab smartLAB, the LZH is showing how additive manufacturing, better known as 3-D printing, can make experimental setups more flexible.

Twelve partners from science and industry are presenting an intelligent and innovative model lab at the special display smartLAB. A part of this intelligent...

Im Focus: New polymer creates safer fuels

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact.

Researchers at Caltech and JPL have discovered a polymeric fuel additive that can reduce the intensity of postimpact explosions that occur during accidents and...

Im Focus: 3-D printing techniques help surgeons carve new ears

When surgical residents need to practice a complicated procedure to fashion a new ear for children without one, they typically get a bar of soap, carrot or an apple.

To treat children with a missing or under-developed ear, experienced surgeons harvest pieces of rib cartilage from the child and carve them into the framework...

Im Focus: Walk the line

NASA studies physical performance after spaceflight

Walking an obstacle course on Earth is relatively easy. Walking an obstacle course on Earth after being in space for six months is not quite as simple. The...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Infrared thermography can detect joint inflammation and help improving work ergonomics

02.10.2015 | Medical Engineering

Semiconductor nanoparticles show high luminescence in a polymer matrix

02.10.2015 | Materials Sciences

New Sinumerik features improve productivity and precision

02.10.2015 | Trade Fair News

More VideoLinks >>>