Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Hinges Open Pathways

28.02.2014
Exchange of bismuth atoms for chloride ions with retention of structure
 

Modern technology makes extensive use of ion exchangers. For example, they are commonly used to decalcify water by binding calcium ions and releasing sodium ions in return. Good exchangers tend to be materials with high surface areas, such as resins, zeolites, or clays. German scientists have now demonstrated that the compact, crystalline structures of intermetallic compounds, in which the diffusion pathways for efficient materials transport are actually absent, can also exchange ions. In the journal Angewandte Chemie, they report the full replacement of the chloride ions in Bi12Rh3Cl2 crystals by bismuth atoms.


The team working with Michael Ruck at the Technical University of Dresden noticed this unexpected phenomenon while researching bismuth subhalides. Subhalides are compounds that have fewer halogen ions than pure ionic metal halides. This results in regions that contain direct bonds between metal atoms. Subhalides with bismuth and rhodium are known to have intermetallic substructures that range from clusters to three-dimensional networks. Bi12Rh3Cl2  contains intermetallic networks consisting of edge-sharing [RhBi8] cubes and antiprisms.

The researchers planned to “pull” the halogen atoms out without destroying the intermetallic regions under gentle conditions using an n-butyllithium solution. The chloride ions were extracted just as the scientists hoped, even though they seemed to be tightly enclosed by the narrow channels of the intermetallic network. Even more surprisingly, the resulting voids in the crystal structure were filled by bismuth atoms. The bismuth atoms came from barely noticeable chemical decomposition of the surface of the crystal.

The resulting product is Bi12Rh3Bi2, a metastable superconductor with a structure identical to that of the subchloride. During the reaction, the morphology of the crystal remains unchanged. “The transformation must be based on efficient transport of chloride ions out and bismuth ions into the network,” says Ruck. Crystallographic studies revealed a small change in the torsion angle of the [RhBi8] antiprisms. “The antiprisms act as hinges in the network,” explains Ruck. “Transient changes in the angle allow wide diffusion pathways to open up parallel to all of the intermetallic strands. Since the diffusion paths intersect, the transport system is three-dimensional.”

Although the intermetallic network only changes very slightly, the electronic properties are significantly different: the subchloride only demonstrates metallic conductivity along special directions that are insulated by nonconducting parts of the structure. In the intermetallic compound, in contrast, the conducting strands are metallically connected through the additional bismuth atoms. They are thus electrically connected, resulting in a three-dimensional metal.

About the Author

Professor Dr. Michael Ruck conducts research and teaches chemistry and food chemistry at the Technical University of Dresden. He works in the area of solid-state chemistry and is particularly interested in metallic compounds and low-temperature synthesis of materials. He is also a Fellow of the Max Planck Institute of the Chemical Physics of solids in Dresden.

Author: Michael Ruck, Technische Universität Dresden (Germany), http://www.cpfs.mpg.de/

Title: The Topochemical Pseudomorphosis of a Chloride into a Bismuthide

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201309460

| Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: Molecular bismuth Atoms chloride compounds ions pathways rhodium

More articles from Life Sciences:

nachricht Molecular Spies to Fight Cancer - Procedure for improving tumor diagnosis successfully tested
03.08.2015 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Stroke: news about platelets
03.08.2015 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

“Seeing” molecular interactions could give boost to organic electronics

03.08.2015 | Materials Sciences

Stroke: news about platelets

03.08.2015 | Life Sciences

Molecular Spies to Fight Cancer - Procedure for improving tumor diagnosis successfully tested

03.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>