Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular high-speed Origami - Researchers elucidate important mechanism of protein folding

09.05.2014

Proteins are responsible for nearly every essential process of life. Their form and structure are of crucial importance for their functionality.

Scientists at the Max Planck Institute of Biochemistry (MPIB) have recently discovered a so far unknown sequence of reactions which is necessary for newly generated proteins to acquire their correct structure.


GroEL/ES nano-cage (light blue and white) with encapsulated substrate protein (orange).

Image: Andreas Bracher / Copyright: MPI of Biochemistry

„In the mechanism we found, the folding is accomplished in a number of fast intermediate steps rather than in one single block“, explains Manajit Hayer-Hartl, MPIB research group leader. „Because this mode of action is energetically more favorable, the proteins are folded not only correctly, but also much faster than previously assumed.“

Proteins are the workhorses of the cell and thus responsible for almost all biological functions including metabolism, signal transmission or the determination of the cell’s shape. However, before they can fulfill their various tasks, the chain-like molecules must first adopt an intricate three-dimensional conformation. This process is called protein folding and is one of the most important processes in biology.

In fact, in the event of improper folding, proteins are often no more able to carry out their duties, or even tend to clump together in aggregates. This in turn can lead to severe diseases like Alzheimer’s or Parkinson’s. In order to avoid this, specialized proteins, the so-called chaperones, help other proteins to adopt their proper shape.

The bacterial chaperones GroEL and GroES serve as an example for this principle: together, they build up a cage-like structure in which they encapsulate new, not yet folded proteins, thereby al-lowing them to fold properly. However, the exact way in which this is accomplished has so far been unclear and is a research topic of the MPIB team led by Manajit Hayer-Hartl and F. Ulrich Hartl, in collaboration with John Engen from Northeastern University in Boston.

Active acceleration of folding
„Our results demonstrate that the chaperones not only prevent protein clumping, but also dramatically accelerate the folding process”, explains Florian Georgescauld, scientist at the MPIB. „Surprisingly, the chaperones achieve this by changing the mechanism of folding: Instead of folding in one large single block, the protein gets its final structure in a series of small, rapid steps – like an elaborate high-speed Origami.” The researchers think that splitting up the reaction might render it energetically more favorable, which in turn would lead to increased speed. Hence, the folding process is finished in a few seconds rather than in several minutes.

The study shows for the first time that chaperones can act not only passively, by preventing aggregation, but as an active folding cage that catalyzes the folding process. This results in a high-speed folding mechanism which is of particular biological relevance, so the researchers say, since in this way proteins can be folded faster than they are produced. Thus, a backlog of proteins which are not yet or improperly folded and the disastrous consequences which might go along with this can be avoided.
[HS]

Original Publication:
F. Georgescauld, K. Popova, A. J. Gupta, A. Bracher, J. R. Engen, M. Hayer-Hartl and F. U. Hartl: GroEL/ES Chaperonin Modulates the Mechanism and Accelerates the Rate of TIM-Barrel Domain Folding. Cell, May 8, 2014.
DOI: 10.1016/j.cell.2014.03.038

Contact:
Dr. Manajit Hayer-Hartl
Chaperonin-assisted Protein Folding
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: mhartl@biochem.mpg.de
http://www.biochem.mpg.de/hayer-hartl

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de/news

Weitere Informationen:

http://www.biochem.mpg.de/news/ueber_das_institut/forschungsbereiche/strukturforschung/hayer_hartl_press - Press Page of the Research Group "Chaperonin-assisted Protein Folding" (Manajit Hayer-Hartl)
http://www.biochem.mpg.de/en/rg/hayer-hartl - Website of the Research Group "Chaperonin-assisted Protein Folding" (Manajit Hayer-Hartl)

Anja Konschak | Max-Planck-Institut

More articles from Life Sciences:

nachricht Nerve cells with a sense of rhythm
25.08.2016 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Genetic Regulation of the Thymus Function Identified
23.08.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

Scientists identify spark plug that ignites nerve cell demise in ALS

25.08.2016 | Health and Medicine

Secure networks for the Internet of the future

25.08.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>